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Figure 6. Immunization of Nfkb2�/� mice does not deplete homeostatic chemokines or impede naïve lymphocyte ingress in the spleen.

A, B WT and Nfkb2�/� (n = 6 for each) mice were administered with OVA–CFA through intraperitoneal route, and the splenic abundances of the indicated chemokines
at day 2 post-immunization were determined by ELISA (A) or the relative levels of chemokine mRNAs were estimated by qRT–PCR (B). WT (n = 6) and Nfkb2�/�

(n = 4) mice administered with saline were used as respective controls. ns, not significant.
C ELISA showing levels of CCL21 and CXCL13 in the indicated bone marrow chimeras (n = 5) at day 2 post-immunization.
D Naïve CD45.1+ B or T lymphocytes were transferred into unimmunized or day 2 immunized WT or Nfkb2�/� mice (n = 3 for each). After another 8–12 h, spleens

were harvested, spleen sections were stained for ER-TR7 (green) and CD45.1 (red), and visualized through fluorescence microscope. The scale bar indicates 100 lm.
Objective magnification, 20×; RP, red pulp; WP, white pulp. The bar graph shows the quantification of CD45.1+ cells in the white pulp area of the spleen. Five
fields/section were used for quantification and presented as mean � SEM.

Data information: In all panels, data are means � SEM. ***P < 0.001; **P < 0.01; *P < 0.05 (paired two-tailed Student’s t-test).
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for TNF to abrogate LTbR-stimulated RelB activity. TNF attenuated

the NIK:IKK1 activity and concurrently induced the expression of

Nfkb2 mRNA through the canonical pathway; these together accu-

mulated unprocessed p100 in LTbR-stimulated cells. It was shown

that p100 produced in LPS-stimulated fibroblasts inhibits the RelA

activity as IjBd (Shih et al, 2009). Biochemical studies confirmed

that p100-IjBd sequesters RelB and other NF-jB subunits in resting

cells (Tao et al, 2014). Signal-induced processing of p100 promotes

the noncanonical RelB activity. Our analyses identified an addi-

tional regulatory role of p100 in abrogating the pre-existing RelB

activity induced by noncanonical signaling in LTbR-stimulated cells

(Fig 7). In a parallel to the inhibition by the classical NF-jB inhi-

bitor IjBa, p100-IjBd not only sequestered RelB in the cytoplasm

of resting cells, but also exported the RelB dimers from the nucleus

of LTbR-activated cells in response to TNF. The nuclear export also

facilitated the reactivation of RelB; the NIK:IKK1 activity, restored

by LTbR upon cessation of TNF signaling, liberated the RelB

dimers from this p100 inhibited cytoplasmic complex. A constitu-

tive RelB:p50 nuclear activity functionally compensates for the

absence of the LTbR-stimulated RelB:p50 dimer in Nfkb2�/� cells.

Indeed, TNF was ineffective in curtailing this RelB:p50 activity in

Nfkb2�/� MEFs; an absence of p100-IjBd in stromal cells

prevented the downregulation of homeostatic chemokines and the

reduction of naı̈ve lymphocytes in inflamed SLOs of OVA–CFA-

immunized mice.

Initial antigen recognition in SLOs is followed by intranodal repo-

sitioning of activated lymphocytes that facilitate the interaction

between T and B lymphocytes, and promotes the formation of

germinal centers (GCs), which are important for humoral responses

(Cyster, 2005). Interestingly, both TNF and Nfkb2 were shown to be

important for establishing GCs and for the humoral immunity

(Caamano et al, 1998; Tumanov et al, 2010). Recent investigation

indicated that the Nfkb2 expression in B cells is dispensable for the

GC formation (De Silva et al, 2016). We hypothesize that the inhibi-

tion of noncanonical NF-jB signaling in stromal cells by the newly

described TNF-p100 pathway orchestrates ongoing immune

response; downregulation of homeostatic chemokines relieves the

retention of lymphocytes within their respective compartments and

thereby favors interstitial movement of activated T and B lympho-

cytes, GC formation, and humoral responses. Consistently, TNF was

shown to inhibit the production of CXCL12 by bone marrow stromal

cells and mobilize osteoclast precursors into the circulation in the

animal model of inflammatory arthritis (Zhang et al, 2008). By

blocking the ingress of naı̈ve lymphocytes in reactive SLOs, this

inhibitory mechanism likely also preserves local resources for rapid

expansion of activated lymphocytes. Therefore, it appears that acute

TNF signal, generated upon immune activation, reinforces ongoing

adaptive immune responses by modulating homeostatic chemo-

kines. However, suppression of homing of naı̈ve lymphocyte gener-

ates potential vulnerability to subsequent microbial infections.

Indeed, previous studies demonstrated that immune challenge of

mice 8 days after LCMV infection fails to produce sufficient CD8+ T

cells and neutralizing IgG against the secondary antigen (Mueller

et al, 2007; Scandella et al, 2008).

In sum, we illustrate that an inhibitory mechanism involving

TNF and p100 controls homeostatic chemokine expressions and

naı̈ve lymphocyte ingress during immune responses. While autoim-

mune and neoplastic diseases are associated with the chronically

elevated expression of TNF, therapeutic application of the TNF-inhi-

bitor etanercept in psoriasis led to lymphadenopathy (Hurley et al,

2008). Of note, prevalence of lymphadenopathy in individuals with

Sjögren’s syndrome correlated with the increased levels of CCL21

(Lee et al, 2017). Future studies ought to examine whether the

proposed regulations of homeostatic chemokines by the newly

described TNF-p100 pathway contribute to the pathogenesis of

human ailments associated with inflammation.

Materials and Methods

Mice, cells, and plasmids

WT and gene-deficient C57BL/6 mice were housed at SAF, NII, and

used adhering to the Institutional guidelines (approval no. IAEC

401/16). MEFs were obtained from E12.5 to E14.5 embryos. BLS4

and BLS12 cell lines were kind gift from Tomoya Katakai, Kyoto

University. aLTbR was a generous gift from Jeff Browning, Boston

University and Adrian Papandile, Biogen. Lentivirus particles were

produced in 293T cells using shRNA constructs from GE Dharma-

con, USA.

In vivo studies

Eight- to 10-week-old mice were administered with 100–200 lg of

OVA–CFA (1:1 emulsion), and SLOs were harvested. For certain

experiments, 500–1,000 lg of etanercept (Pfizer, UK) was

Figure 7. A mechanistic model explaining TNF-mediated suppression of
noncanonical NF-jB signaling.
In resting cells, TRAF2:TRAF3:cIAP complex promotes the degradation of NIK, and
p100-IjBd retains RelB and other NF-jB monomers. Activation of LTbR leads to
the proteolysis of TRAF2 and TRAF3 that rescues NIK from the constitutive
degradation. NIK in association with IKK1 induces the processing of p100 into
p52 that liberates the RelB heterodimers. TNF signal renders TRAF2 and TRAF3
resistant to degradation in LTbR-stimulated cells resulting in the inactivation of
NIK. In addition, TNF-activated RelA dimers induce the transcription of Nfkb2
mRNA, which encodes p100. Therefore, TNF treatment of LTbR-stimulated cells
potently accumulates the precursor p100, which sequesters the pre-existing
nuclear RelB dimers as inhibitory IjBd and terminates RelB-mediated
expressions of homeostatic chemokines. The proposed mechanism impedes
continuing ingress of naïve lymphocytes in reactive SLOs.
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administered. To score lymphocyte ingress, naı̈ve CD45.1+ spleno-

cytes (5–20 × 106) were transferred retro-orbitally into the recipient

mice. Hematopoietic cells were harvested from pLNs, the frequency

of transferred CD45.1+ B or T cells in pLNs was measured in FACS

(BD Biosciences) using anti-CD45.1 Ab and anti-CD45R or anti-

CD90 Ab (eBioscience, USA), and the data were analyzed using

FlowJo v 9.5. Alternately, CD45.1+ B or T cells were first purified

using lymphocyte isolation kits (Miltenyi Biotec), 10–20 × 106 cells

were transferred, and subsequently cryosections were obtained from

the spleen. Stromal reticular fibre network was visualized using

anti-ERTR7 Ab (Abcam, UK) and Alexa flour 488 conjugated

secondary Ab (Invitrogen). The presence of transferred lymphocytes

in the white pulp was scored using anti-CD45.1 Ab conjugated to

Alexa flour 594 (Biolegend, USA). The image was captured in

Axioimager Z1 fluorescence microscope (Zeiss, USA). The bone

marrow chimeras were subjected to immunization after ~8 weeks of

reconstitution.

Gene expression analyses and ELISA

Total RNA was isolated using RNeasy kit (Qiagen, Germany) from

tissues or cultured cells, and was subjected to qRT–PCR (see

Appendix Table S1 for primer descriptions). Also tissue homoge-

nates were prepared, normalized for the total protein content (BCA

kit; Thermo Fisher, USA), and utilized in ELISA for detecting

CCL21, CXCL13, CXCL12, TNF (DuoSet kit; R&D Systems, USA),

and IFNc (BD Bioscience, USA).

Biochemical analyses

Cells were treated with 0.1 lg/ml of aLTbR, 1 ng/ml of TNF

(Roche, Switzerland) or subjected to combinatorial stimulations.

Nuclear, cytoplasmic or whole-cell extracts were used in EMSA,

supershift analysis, immunoblotting, and immunoprecipitation-

based studies, as described (Banoth et al, 2015). RelB DNA binding

activity was also measured using TransAM flexi NF-jB family kit

(Cat. No. 43298, Active Motif, USA) according to the manufacturer’s

instructions. For detecting ubiquitinylated proteins, cells extract was

prepared in denaturing buffer (Sanjo et al, 2010). NF-jB/IjB anti-

bodies have been described (Roy et al, 2017). Antibodies against

TRAF2 (sc876), TRAF3 (sc949), LTbR (sc398929) were from Santa

Cruz Biotechnology, USA; antibodies against TRAF1 (4710), p52/

p100 (4882), K48-linked polyubiquitin (8081), and K63-linked

polyubiquitin (5621) were from Cell Signaling Technology, USA. For

immunoblotting the coimmunoprecipitates, TrueBlot (18-8816-33,

Rockland) was used. The gel images were acquired using Phos-

phorImager (GE Amersham, UK) and quantified in ImageQuant 5.2.

For certain experiments, cells were treated with 20 lM of MG132

(Sigma-Aldrich, USA) or 20 nM of Leptomycin B (Santa Cruz

Biotechnology). NIK coimmunoprecipitates derived from the cyto-

plasmic extracts were incubated with c32P-ATP and recombinant

p100406–899 (BioBharati Life Sciences, India) for measuring the NIK:

IKK1 activity (Banoth et al, 2015).

Computational modeling

Based on our experimental data and the literature, we included

the description of p100-IjBd-mediated inhibition of the RelB:p52

dimer into the mathematical model published earlier by Shih et al

(2012) and accordingly revised the model (see Appendix Supple-

mentary Methods for details). We used numerical input derived

from experimental kinase activities in our simulations. The model

was simulated using ode15s in MATLAB (2012b, Mathworks,

USA).

Statistical analysis

Error bars are shown as SEM of three to five replicates for biochemi-

cal experiments and 4–14 mice for animal studies. Quantified data

are means � SEM, and paired two-tailed Student’s t-test was used

for calculating statistical significance, where “*”, “**”, and “***”

indicate P < 0.05, P < 0.01, and P < 0.001, respectively.

Expanded View for this article is available online.
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