The retinal pigment epithelium as a gateway for monocyte trafficking into the eye

Inbal Benhar¹, Kitty Reemst¹, Vyacheslav Kalchenko² & Michal Schwartz¹,*

Abstract

The choroid plexus epithelium within the brain ventricles orchestrates blood-derived monocyte entry to the central nervous system under injurious conditions, including when the primary injury site is remote from the brain. Here, we hypothesized that the retinal pigment epithelium (RPE) serves a parallel role, as a gateway for monocyte trafficking to the retina following direct or remote injury. We found elevated expression of genes encoding leukocyte trafficking determinants in mouse RPE as a consequence of retinal glutamate intoxication or optic nerve crush (ONC). Blocking VCAM-1 after ONC interfered with monocyte infiltration into the retina and resulted in a local pro-inflammatory cytokine bias. Live imaging of the injured eye showed monocyte accumulation first in the RPE, and subsequently in the retina, and peripheral leukocytes formed close contact with the RPE. Our findings further implied that the ocular milieu can confer monocytes a phenotype advantageous for neuroprotection. These results suggest that the eye utilizes a mechanism of crosstalk with the immune system similar to that of the brain, whereby epithelial barriers serve as gateways for leukocyte entry.

Keywords monocyte-derived macrophages; neuroprotection; optic nerve crush; retinal ganglion cells; retinal pigment epithelium

Subject Categories Neuroscience

DOI 10.15252/embj.201694202 | Received 1 November 2015 | Revised 25 February 2016 | Accepted 21 March 2016

Introduction

The immune privileged status of the central nervous system (CNS), including the eye, brain and spinal cord, has led to the long-held view that immune activity within the CNS is a sign of pathology that should be mitigated. However, extensive research over the past two decades has revealed that the CNS can and should benefit from immune support, just like any other tissue in the body, both under health conditions (Kipnis et al., 2004; Ziv et al., 2006), and in the context of disease or injury (Rapalino et al., 1998; Moalem et al., 1999; Simard et al., 2006; Yin et al., 2006; Beers et al., 2008; Kigerl et al., 2009; Shechter et al., 2009; London et al., 2011, 2013; Derecki et al., 2012).

In studies using animal models of spinal cord and retinal injuries, we found that monocyte-derived macrophages (mo-Mφ) are key players in the recovery from CNS insults (Shechter et al., 2009; London et al., 2011). Mo-Mφ are spontaneously recruited to the sites of injury, where they exhibit anti-inflammatory activities. Depleting blood monocytes impairs the repair process, whereas boosting their levels by adoptive transfer results in improved recovery (Shechter et al., 2009; London et al., 2011). Importantly, the anti-inflammatory features of the recruited mo-Mφ were found to be pivotal for their capacity to promote functional recovery after spinal cord injury (Shechter et al., 2009) and to provide neuroprotection to retinal ganglion cells (RGCs) after ocular glutamate intoxication (London et al., 2011).

The choroid plexus epithelium, which is located in the brain ventricles and forms the blood–cerebrospinal fluid barrier, has been identified as an active interface between the CNS and the immune system, acting both as a site of immunosurveillance and as a gateway that regulates the entry of immune cells to the brain and spinal cord upon need (Kunis et al., 2013, 2015; Shechter et al., 2013b; Baruch et al., 2014). Intriguingly, the infiltration of immune-resolving monocytes to the injured spinal cord was found to occur through this gateway, despite it being located remotely from the primary site of damage (Shechter et al., 2013b). In the present study, we explored whether leukocyte trafficking through an epithelial barrier is applicable to other sites of immune privilege and thus investigated whether a similar scenario takes place in the eye.

The interfaces between the retina and the blood circulation include barrier systems reminiscent of those that exist between the circulation and the brain. In the eye, these systems are parallelized by the inner and outer blood-retinal barriers (BRBs). The inner BRB (iBRB) is formed by the nonfenestrated endothelial capillaries within the inner layers of the retina and is similar in structure and function to the blood–brain barrier, whereas the outer BRB (oBRB) is comprised of the retinal pigment epithelium (RPE), Bruch’s membrane, and the fenestrated capillaries of the choroid. The tight junctions within the RPE layer maintain the integrity of the oBRB (Kaur et al., 2008; Ambati et al., 2013; Shechter et al., 2013a). The RPE plays an active role in sustaining the immune privileged status of the eye (Holtkamp et al., 2001; Streilein, 2003; Ambati et al., 2013; Stein-Streilein, 2013) by producing and secreting a variety of...
immunoregulatory factors (Holtkamp et al., 2001; Zamiri et al., 2007; Ma et al., 2009; Detrick & Hooks, 2010; Shechter et al., 2013a), and skewing immune cells toward an immunoregulatory phenotype (Liversidge et al., 1993; Ishida et al., 2003; Sugita et al., 2008; Vega et al., 2010; Kawazoe et al., 2012). RPE supernatants were found to inhibit the production of IL-12 and to increase IL-10 secretion in a macrophage cell line (Zamiri et al., 2006), and the co-culturing of BM-derived monocytes with RPE cells was reported to induce their differentiation into myeloid-derived suppressor cells that reduce the severity of experimental autoimmune uveoretinitis (EAU) (Tu et al., 2012). Notably, the immunoregulatory microenvironment dictated by the RPE extends to the subretinal space (SRS) (Zamiri et al., 2007). The accumulation of macrophages in the SRS is reported to increase with age and in the context of retinal disease, such as age-related macular degeneration (AMD), apparently in association with defective immunomodulation by the RPE (Forrester, 2003; Xu et al., 2009; Sennlaub et al., 2013).

Here, we hypothesized that the RPE functions as a gateway for trafficking of monocytes into the retina upon damage to RGCs, regardless of whether the insult is inflicted directly on the RGCs or remotely from them. We found that the RPE responds to remote damage in the form of optic nerve crush (ONC), as well as to direct retinal damage, such as ocular glutamate intoxication, with the elevated expression of genes encoding leukocyte trafficking molecules, including VCAM-1, and that mo-Mφ are recruited to this barrier, apparently en route to the retina. Blocking VCAM-1 decreased monocyte infiltration into the retina and resulted in a pro-inflammatory cytokine milieu in the injured eye. Monocytes injected intraocularly after glutamate intoxication localized to the RPE/SRS and conferred neuroprotection to RGCs.

Results

ONC elicits an immune response in the retina and activates the RPE for leukocyte trafficking

To test whether the RPE is involved in monocyte recruitment to the retina when the primary insult is remote from the eye, we used an established model of ONC, in which extensive death of RGCs is seen within days, some of which could be rescued by immune-based neuroprotection (Yoles & Schwartz, 1998; Moalem et al., 1999; Levkovitch-Verbin et al., 2000; Fisher et al., 2001). First, we studied the local immune response at the lesion site. The injury site could be delineated by GFAP staining and by the accumulation of IB-4+ activated myeloid cells (Fig 1A). Analysis of optic nerve sections from [Cx3Cr1γIR +/− → WT] BM chimeric mice, in which blood-derived macrophages carry a GFP label (Jung et al., 2000; London et al., 2011), confirmed that some of these activated myeloid cells represented GFP+ blood-derived macrophages (Fig 1B). T cells, depicted by CD3 immunostaining, were also detected at the injury site (Fig 1C), as previously described (Moalem et al., 1999). We next analyzed the immune response within the retina by flow cytometry. Immune cells in the retina were identified by pre-gating on the leukocyte marker CD45.2, and then divided into monocytes/macrophages and T cells, based on the expression of CD11b or TCRβ, respectively (Fig 1D). Among the CD11b+ cells, infiltrating mo-Mφ were regarded as CD45.2hi, as opposed to resident microglia, which have been shown to express low/intermediate CD45 levels (Sedgwick et al., 1991; Dick et al., 1995; Renno et al., 1995; Shechter et al., 2013b; Zhao et al., 2014; O’Koren et al., 2016). We verified this finding in [Cx3Cr1γIR +/− → WT] BM chimeric mice, in which we detected the infiltration of Cx3Cr1-GFP+ mo-Mφ into the retina only after ONC, and not in noninjured control eyes. Importantly, these GFP+ cells all expressed high levels of CD45.2 (Fig 1E). Using this gating strategy, we found an elevation in the total number of immune cells in the retina after ONC, including both macrophages and T cells (Fig 1F). Among the macrophages, an elevation was also seen in cells of the CD45hi subset, representing mo-Mφ (Fig 1F, middle graph).

To evaluate the RPE response to ONC in terms of its expression of genes encoding leukocyte trafficking molecules, RPE complex (consisting of the RPE, choroid, and sclera) was excised from noninjured eyes and from eyes 8 h, or 1, 3, and 7 days after ONC, and analyzed by quantitative real-time PCR. Results showed an early and transient increase in the expression of the integrin ligands Icam1, Vcam1, and Madcam1 in the RPE complex after ONC, compared to RPE from the noninjured, contralateral eye (Fig 2A). The expression of ICAM-1 and VCAM-1 by the RPE was verified by immunofluorescence staining (Fig 2B). We also detected an elevation in the expression of the chemokines relevant to monocyte chemotaxis and maturation, including the CCR2 ligands, Ccl2 (MCP-1) and Ccl12, the transcript levels of which remained high as long as 1–3 days after the injury (Fig 2C). Kinetics similar to those of the adhesion molecules were seen for the expression of genes encoding for the chemokines Meso, Cxcl10, and Cxcl12 (SDF-1) (Fig 2C and D), as well as for Tnfr1 and Ifng1 (Fig 2E), receptors for the cytokines TNF-α and IFNγ, which were demonstrated to have synergistic effects in the activation of the brain’s choroidplexus epidermis for leukocyte trafficking (Kunis et al., 2013).

Monocyte/macrophage dynamics in the RPE and retina after ONC

To gain insight as to whether the RPE could serve as the route of entry for monocytes into the retina after ONC, we followed the timing of appearance of these cells separately in the RPE and in the retina by flow cytometry, 1, 3, and 7 days after the injury. We observed a significant increase in total CD11b+ myeloid cells in both the RPE complex and the retina from ONC eyes at all three time points after the injury, as compared to noninjured control tissues (Fig 3A and B, left panels). However, while myeloid cell counts were higher in the RPE on d1 and d3 after the crush, and began decreasing by d7, within the retina these cells showed a distinct pattern, of accumulation over time (Fig 3A and B, left panels, filled bars). The finding that the kinetics of monocyte accumulation was delayed in the retina relative to the RPE supported our contention that the RPE is on the route of these cells into the retina.

To decipher the relative distribution of infiltrating mo-Mφ as a function of time in the RPE and the retina, we next analyzed the myeloid cell population based on Ly6C expression levels; the levels of Ly6C expressed by infiltrating myeloid cells that are pro-inflammatory are higher than those expressed by infiltrating anti-inflammatory mo-Mφ (Shechter et al., 2013b). The Ly6Chi/lo myeloid population may also include resident microglia (London et al., 2011, 2013; Butovsky et al., 2012; Zigmond et al., 2012; Shechter et al,
Figure 1. ONC elicits an immune response in the retina, including the infiltration of monocyte-derived macrophages.

A Representative micrographs of optic nerve sections collected from mice 8 days after ONC, showing the accumulation of IB-4+ activated myeloid cells in the injury site, which is demarcated by GFAP staining. Scale bar, 50 μm.

B Representative micrograph of the lesion site in optic nerve sections 7 days after crush injury in [Cx3CR1-GFP/+/WT] BM chimeric mice, immunostained for GFP (red), to depict monocyte-derived macrophages, and IB-4 (green) to label activated myeloid cells. Scale bar, 100 μm. Inset scale, 20 μm.

C Representative micrograph of optic nerve section 7 days after crush injury, immunostained for CD3 (red, arrows). Scale bar, 100 μm.

D Representative dotplots showing the general gating strategy used in flow cytometry experiments for the analysis of immune cells in the retina. Leukocytes were identified by gating on CD45+ cells and were further gated on CD11b+ or TCRβ+ to detect monocytes/macrophages and T cells, respectively. Of the CD11b+ cells, infiltrating monocytes were regarded as CD45hi.

E Representative contour plot from a [Cx3CR1-GFP/+/WT] BM chimeric mouse, verifying that infiltrating blood-derived macrophages (CX3CR1-GFP+) are indeed CD45hi, and showing that they are detectable only in retinas from eyes that underwent ONC, while absent in noninjured controls (red vs. blue line). Cells were pre-gated on CD11b. n = 4 per group.

F Quantitative analysis of flow cytometric data, showing the induction of an immune response in the retina after ONC, evident by a general increase in leukocytes (CD45+), including CD11b+CD45hi cells (representing infiltrating macrophages) and T cells (TCRβ+). n = 4 per group. Data shown are representative of six independent experiments. Graphs show mean ± SE of each group. ***P < 0.001, Student’s t-test.

Data information: FSC, forward scatter; noninj, noninjured control; ONC, optic nerve crush.
Figure 2. The RPE as a route of monocyte entry to the eye

A. Bar graphs showing mRNA expression of ICAM-1, VCAM-1, and MadCAM-1 in noninj and ONC conditions.

B. Immunofluorescence images of ICAM-1 / claudin-1 / Hoechst and VCAM-1 / RPE65 / Hoechst.

C. Bar graphs showing mRNA expression of Ccl2, Ccl12, Mcsf, and Cx3cl1 in noninj and ONC conditions.

D. Bar graphs showing mRNA expression of Cxcl9 and Cxcl10 in noninj and ONC conditions.

E. Bar graphs showing mRNA expression of Tnfr1, Ifngr1, and Ifngr2 in noninj and ONC conditions.

Published online: April 22, 2016

The EMBO Journal

The Authors
In correlation with the CX3CR1-GFP+CD45hiCD11b+ infiltrating myeloid cells gradually increased in the retina (Fig 3B, right panel), panels). Subsequently, while the proportion of Ly6C+ /himyeloid mo-Mφ cells decreased in both compartments, the proportion of Ly6C-/+myeloid cells observed in chimeric mice at the same time point exhibited upregulated expression in the RPE after ONC (Fig 2A), we following the injury (Fig 1E).

Having observed that VCAM-1 is one of the integrin ligands that exhibited upregulated expression in the RPE after ONC (Fig 2A), we envisioned that the infiltration of immune-resolving mo-Mφ to the eye might occur through VCAM-1-VLA-4 interactions, in analogy to the entry of these cells via the remote brain choroid plexus epithelium to the injured spinal cord (Shechter et al, 2013b). Knowing that following glutamate intoxication, the infiltrating mo-Mφ skew the milieu in the retina toward an anti-inflammatory one (London et al, 2011), we tested the effect of blocking VCAM-1 on the retinal cytokine milieu after ONC.

Mice were intravenously (i.v.) injected with anti-VCAM-1 antibody (clone M/K-2.7) or with an IgG isotype control antibody immediately after ONC. After 3 days, retinas were collected and analyzed for mRNA expression of Tnf, Il12a, Il1b, and Tgfb2 by quantitative.

Data information: Data shown are representative of three independent experiments. Bar graphs throughout the figure show mean ± SE of each group. Asterisks above bars indicate significant differences compared with noninjured tissue; significant differences between different time points are indicated by asterisks between bars. *P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA followed by Tukey's HSD. noninj, noninjured control; ONC, optic nerve crush.
CX3CR1-GFP+ BM monocytes were additionally labeled to employ a double-labeling live imaging approach, in which the retinal epithelium in the pigmented C57BL/6J mice and the retina after injury, we took advantage of the optical properties of live imaging of infiltrating monocytes in the eye. The results supported the involvement of VCAM-1 in the recruitment of monocytes that contribute to retinal immune homeostasis.

Injured mice injected with an isotype control antibody (Fig 4A). The bias in the retinal cytokine milieu in anti-VCAM-1-treated mice was indeed diminished in retinas from mice at the peak of EAU, but remained intact in retinas after ONC, in a manner comparable to noninjured controls (Figs 5B and EV1), indicating that ONC did not induce breakdown of the BRB.

To focus on the spatial association of peripheral immune cells with the RPE, we examined histological sections from the eyes of Actb<sup>cre⁺→ WT] BM chimeric mice, whose peripheral immune cells express a GFP reporter. Sections from mice that had undergone ONC and from noninjured contralateral eyes were immunostained for the specific RPE marker, RPE65, and for GFP, to detect peripheral immune cells expressing GFP. Whereas only sporadic GFP⁺ cells could be seen around the choroid and RPE of control eyes, a clear accumulation of GFP⁺ cells was found in the injured eyes, both around the RPE and within the retina and vitreous (Fig 5C). Moreover, in the ONC eyes, we could detect single GFP⁺ cells that were in close contact with the RPE, and which extended processes toward this layer (Fig 5D). GFP⁺ cells that had infiltrated the retina could only be found within the injured eyes, where they localized near the ganglion cell layer (GCL), in the vicinity of RGC cell bodies (Fig 5E).
Previously observed in the case of glutamate intoxication (London et al., 2011).

Taken together, these results demonstrated that the recruitment of peripheral leukocytes to the retina after remote ocular injury involves the RPE and does not necessitate breaching of retinal endothelial barriers.

The ocular milieu can confer monocytes a neuroprotective phenotype

Having previously established the contribution of spontaneously recruited mo-Mφ to RGC protection after retinal glutamate intoxication (London et al., 2011), we analyzed the RPE for expression of leukocyte-homing determinants following this type of ocular insult as well. Transcript levels of the integrin ligands Icam1, Vcam1, and Madcam1 were elevated in the RPE complex 1 day after glutamate intoxication (Fig 6A), as was the expression of Ccl2 and Mcsf (Fig 6B). Cxcl10 and Cxcl12 (Fig 6C) and the cytokine receptor, Tnfr1 (Fig 6D). Notably, Ccl5 (RANTES), which was shown to be associated with intraocular inflammation and recruitment of Th1 cells into the eye (Crane et al., 2006), was not altered following glutamate intoxication (Fig 6B). The expression of ICAM-1 and VCAM-1 by the RPE was confirmed at the protein level by immunofluorescence staining (Fig 6E).

Considering the immunoregulatory capacity of the RPE/SRS milieu (Streilein, 2003; Zamiri et al., 2007; Detrick & Hooks, 2010; Shechter et al., 2013a; Stein-Streilein, 2013), we hypothesized that monocytes infiltrating the retina after injury may come in contact with this compartment on their route from the circulation into the retina, which could possibly affect them to acquire activities characteristic of myeloid cells that can contribute to inflammatory resolution (Zamiri et al., 2006; Tu et al., 2012). We adopted the protocol of i.v. injection of monocytes following glutamate intoxication (London et al., 2011), and searched within ocular sections for the injected Cx3cr1-GFP+ monocytes. Some of the i.v.-injected cells could be found in the SRS, in the vicinity of the RPE, and expressed the anti-inflammatory cytokine, IL-10 (Fig 6A), as was the expression of Ccl2 and Mcsf (Fig 6B), Cxcl10 and Cxcl12 (Fig 6C) and the cytokine receptor, Tnfr1 (Fig 6D). Notably, Ccl5 (RANTES), which was shown to be associated with intraocular inflammation and recruitment of Th1 cells into the eye (Crane et al., 2006), was not altered following glutamate intoxication (Fig 6B). The expression of ICAM-1 and VCAM-1 by the RPE was confirmed at the protein level by immunofluorescence staining (Fig 6E).

In this study, we characterized the RPE as a potential site that orchestrates the recruitment of monocytes to the retina under different “sterile” insults, including when the injury is remote from the eye, and demonstrated that neuroprotective mo-Mφ come in contact with the RPE/SRS milieu upon their infiltration to the retina.

Our live imaging results, together with the observed association of monocytes with the RPE in two distinct injury models that differ in their nature and location, both of which elicited an increase in the expression of leukocyte trafficking molecules by this epithelial tissue, lead us to suggest that the recruitment of monocytes that can potentially benefit the eye could take place via the RPE. Notably, the function of the RPE as a gateway between the circulation and the retina has mainly been studied in the context of retinal disease

Figure 5. Live imaging of infiltrating monocytes in the eye.

A Live imaging of noninjured and ONC eyes, showing the presence of DiR+ monocyte clusters in injured eyes only. Some of the cell clusters are co-localized with GFP, indicating monocytes that have crossed the RPE and infiltrated the retina. Data shown are representative of two independent experiments, each involving the imaging of eyes from either 2 or 3 mice.

B Representative micrographs of eye sections collected from mice 1 day after ONC, or 29 days after the induction of EAU, stained for β-dystroglycan (red, arrows) and laminin (green), showing a comparable structure of blood vessels in the inner retina of ONC eyes and uninjured controls, which is different from the appearance of blood vessels in EAU retina. Scale bar, 50 μm.

C–E [AcetOBN/ → WT] BM chimeric mice were generated and subjected to ONC. (C) Representative micrographs showing the abundance of GFP+ cells (green) in the RPE (RPE65, red) and retina of the ONC eye compared to uninjured contralateral eye. Retinal layers can be distinguished by Hoechst staining (blue; scale bar, 100 μm). (D) Higher magnification micrographs of ONC eyes, showing the association of blood-derived GFP+ cells (green, arrows) with the RPE (red); note processes extending from the cells to the RPE (scale bar, 20 μm). (E) Representative micrograph of ONC eye showing GFP+ cells (green) in proximity to the GCL, the site of dying retinal ganglion cells (scale bar, 200 μm). n = 4 per group.

Data information: EAU, experimental autoimmune uveoretinitis; GCL, ganglion cell layer; noninj, uninjured control; ONC, optic nerve crush; ONH, optic nerve head; RPE, retinal pigment epithelium.
Figure 5.
Figure 6. The expression of leukocyte trafficking molecules by the RPE is upregulated following ocular glutamate intoxication.

A–D Changes in mRNA transcript levels of a series of adhesion molecules (A), chemokines (B, C), and cytokine receptors (D) in injured retinas compared with contralateral noninjured retinas, assessed 1 day after GT intoxication. n = 6 per group. Bar graphs show mean ± SE of each group. *P < 0.05; **P < 0.01; ***P < 0.001, Student’s t-test.

E Representative micrographs showing the expression of ICAM-1 and VCAM-1 (red) by the RPE (green) 1 day after GT intoxication (scale bar, 20 μm).

Data information: GT, glutamate; noninj, noninjured control.
A IL-10 / CX3CR1-GFP / Hoechst

B Brn3a

C

% RGC survival (relative to noninj)

0 50 100

PBS mon

D IL-10 / CX3CR1-GFP / Hoechst

E IGF-1 / CX3CR1-GFP / Hoechst

TGF-β / CX3CR1-GFP / Hoechst

BDNF / CX3CR1-GFP / Hoechst

Arg-1 / CX3CR1-GFP / Hoechst

CD36 / CX3CR1-GFP / Hoechst

Figure 7.
and has therefore been associated with inflammation (Dua et al., 1991; Greenwood et al., 1994; Omri et al., 2011). Nevertheless, it has been proposed that even during inflammation, the RPE maintains an immunosuppressive role (Crane & Liversidge, 2008). In EAU, the early infiltration of immune cells was reported to occur through the inner retinal vessels, in a process involving perivascular cuffing, while the oBRB remains intact. At later stages of the disease, immune cells could also be seen in proximity to the RPE (Dua et al., 1991; Greenwood et al., 1994), possibly corresponding to the infiltration of cells with distinct properties necessary for the resolution of inflammation. In line with those findings, Kerr and colleagues more recently described the accumulation of alternatively activated macrophages in the SRS at the resolution phase of EAU (Kerr et al., 2008a).

It is important to emphasize that our results do not negate that leukocyte trafficking through the RPE can be destructive under certain conditions, nor that immune cells can enter the retina via additional sites, which do not involve the disruption of endothelial barriers. For instance, the ciliary body and optic nerve vessels were found to act as entry routes for blood-borne monocytes to the retina after light-induced injury, without obvious breakdown of the iBRB (Joly et al., 2009). In our present study, we found that following ONC blood-derived monocytes are found at the lesion site, as well as at the retina, indicating a potential migratory pathway for the cells between the optic nerve and the retina. Nevertheless, the close association of peripheral monocytes with the RPE, as shown in our results, including in areas remote from the optic nerve head, as well as the activation of this tissue for leukocyte trafficking, emphasizes the involvement of the RPE in monocyte trafficking into the retina in the models we studied.

The integrin ligand VCAM-1, which was reported to facilitate leukocyte migration through the RPE in vitro (Devine et al., 1996), was elevated here in the RPE after injury. Thus, using an antibody against VCAM-1 to block monocyte trafficking resulted in skewing of the retinal cytokine milieu toward a pro-inflammatory one. Among the same lines, blocking VCAM-1 after spinal cord injury inhibits the recruitment of inflammation-resolving monocytes through the choroid plexus epithelium, resulting in worse functional outcomes (Shechter et al., 2013b). Collectively, these findings link VCAM-1-dependent entry of monocytes to the restoration of postinjury homeostasis in the neuronal tissue. Notably, we previously reported that a pro-inflammatory milieu persists in the injured neuronal tissue when monocyte infiltration is inhibited, vis-à-vis the ongoing accumulation of resident microglia (Shechter et al., 2009; London et al., 2011), suggesting that this pro-inflammatory setting results, at least in part, from the uncontrolled activity of microglia in the absence of inflammation-resolving mo-Mφ (Cohen et al., 2014).

This study highlights an aspect of the eye’s immune privilege, which has hitherto been underappreciated; we propose that rather than serving as an immunosuppressive barrier that prevents entry into the eye, leukocyte trafficking involving the RPE/SRS milieu may provide a mechanism that allows infiltrating monocytes and perhaps other immune cells to acquire a phenotype favorable for repair. Importantly, in the present study, monocytes injected directly into the damaged eye after glutamate intoxication were effective in conferring neuroprotection to RGCs in a manner similar to monocytes trafficking from the circulation (London et al., 2011), substantiating that beyond the route of entry, the ocular milieu is also involved in controlling the activity of immune cells.

Our present results reinforce the recently reported roles of mo-Mφ in supporting CNS recovery (Simard et al., 2006; Town et al., 2008; Kigerl et al., 2009; Koronyo-Hamaoui et al., 2009; Shechter et al., 2009, 2013b; London et al., 2011, 2013; Derecki et al., 2012; Koronyo et al., 2015). Mo-Mφ can serve a source of a variety of molecules including cytokines, growth factors, and neurotrophins that benefit tissue repair. Accordingly, they can promote cell survival, renewal and regeneration, regulate matrix remodeling and remyelination, and resolve local inflammation (Barrette et al., 2008; Shechter et al., 2009, 2013b; London et al., 2011; Miron et al., 2013). Importantly, the spontaneous recruitment of these cells to the CNS after injury is suboptimal, but is amenable to boosting by systemic modulation or direct injection of monocytes to the CNS territory (Rapalino et al., 1998; Shechter et al., 2009; London et al., 2011; Baruch et al., 2016). As demonstrated in the present study, the eye is no exception to this rule. We found that the i.v.t.-injected monocytes expressed IL-10, which was previously reported to mediate the neuroprotective effect of mo-Mφ after glutamate intoxication (London et al., 2011). The cells additionally expressed neurotrophic factors such as IGF-1 and BDNF, which may also account, in part, for their neuroprotective potential (Rocha et al., 1999; Kermer et al., 2000; Nakazawa et al., 2002; Morimoto et al., 2005). Notably, the expression of both pro- and anti-inflammatory cytokines by these cells highlights their heterogeneity and reflects their ability to respond to and affect the immunological milieu in the eye to best support repair (Mossner & Edwards, 2008; Sica & Mantovani, 2012; Novak & Koh, 2013).

The results of this study bear important implications to age-related degenerative diseases of the eye. For example, in AMD, the leading cause of blindness among the elderly in the Western World, RPE dysfunction is a critical factor. Animals that are impaired in...
immune cell trafficking, such as mouse strains deficient in CCL2-CCR2 or fractalkine-CX3CR1 signaling, show degenerative changes in the retina with age and are often used to model some of the pathological aspects of AMD (Ambati et al., 2003; Tuo et al., 2007; Chan et al., 2008; Luhmann et al., 2009). It was suggested that this local chemokine signaling is needed for immune-mediated retinal repair (Ambati et al., 2013), and specifically that an impaired mononuclear response can tip the balance between a protective immune response and harmful inflammation at the retina–choroid interface (Chen et al., 2011). Along these lines, prevention of monocyte entry into the eye has been shown to promote choroidal neovascularization, one of the cardinal features of the exudative (“wet”) form of AMD (Apte et al., 2014, 2015; Schwartz & Baruch, 2014; Robbie et al., 2016). It was suggested that this local chemokine signaling is needed for immune-mediated retinal repair (Ambati et al., 2013), and specifically that an impaired mononuclear response can tip the balance between a protective immune response and harmful inflammation at the retina–choroid interface (Chen et al., 2011). Along these lines, prevention of monocyte entry into the eye has been shown to promote choroidal neovascularization, one of the cardinal features of the exudative (“wet”) form of AMD (Apte et al., 2014, 2015; Schwartz & Baruch, 2014; Robbie et al., 2016).

The RPE as a route of monocyte entry to the eye

Chimeric mice were subjected to injury 8–12 wk after BM transplantation.

Glutamate intoxication injury

Mice were anesthetized and treated with local anesthesia (Localin, Dr. Fischer) applied directly to the eye, and were injected i.v.t. with a total volume of 1 μl saline containing 400 nmol L-glutamate (Sigma), as previously described (Schori et al., 2002).

Optic nerve crush injury

Under a binocular operating microscope, the conjunctiva of the right eye of deeply anesthetized mice was incised, and the optic nerve was exposed. With the aid of cross-action forceps, the optic nerve of one eye was subjected to a severe crush injury 1–2 mm from the eyeball.

EAU induction

Mice were immunized subcutaneously with 500 μg IRBP 1-20 peptide (GPTFHLFQPSLVLMVKLLD) in a 1:1 emulsion with CFA containing Mycobacterium tuberculosis strain H37.RA (Difco) at 2.5 mg/ml (1.25 mg/ml final). Mice were co-injected intraperitoneally with 1 μg Bordetella pertussis toxin (Sigma).

Adaptive monocyte transfer

BM cells were harvested from the femora and tibiae of mice and enriched for mononuclear cells on a Ficoll density gradient. The CD115⁺ BM monocyte population was isolated through MACS enrichment using biotinylated anti-CD115 antibodies and streptavidin-coupled magnetic beads (Miltenyi Biotec), according to the manufacturer’s protocols. Following this procedure, monocytes were injected i.v. through the tail vein (4–5 × 10⁶ cells per mouse) or i.v.t. (1 × 10⁵ per mouse).

DiR labeling of monocytes

For in vivo imaging experiments, purified monocytes were resuspended in 1 ml PBS and added to a labeling solution consisting of 9 ml PBS and 50 μl of the near-infrared lipophilic dye, DiR (1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine iodide, molecular probes; 0.75 mg/ml in 100% ethanol). The cells were incubated in the solution for 40 min at 37°C, with gentle agitation. After incubation, the cell suspension was added to a 50-ml tube containing 10% serum in PBS and centrifuged. Cells were resuspended in PBS and i.v. injected through the tail vein (4–5 × 10⁶ cells per mouse). Protocol was adapted from Kalchenko et al. (2006).

Administration of blocking antibody

A rat antibody directed to VCAM-1 (clone M/K-2.7, BioXCell) or matching IgG1 isotype control (clone HRPN, BioXCell) was injected at 200 μg per mouse through the tail vein, concurrently with ONC.

Histology and immunofluorescence

After intracardiac perfusion with PBS, eyes were removed, fixed in 2.5% paraformaldehyde (PFA) for 24 h, transferred to 70% ethanol,
and then embedded in paraffin, as previously described (Shechter et al., 2007). Throughout the study, 6-μm-thick paraffin sections were used. The following antibodies were used for immunolabeling: rabbit anti-glia fibrillary acidic protein (GFAP; 1:100; Dako), rabbit anti-CD3 (1:1,000; Dako), rabbit anti-GFP (1:100; MBL), biotinylated goat anti-GFP (1:100; Abcam), mouse anti-Brn3a (1:50; Santa Cruz Biotechnology, Inc.), goat anti-IL-10 (1:20; R&D Systems), mouse anti-TGF-β1, 2, 3 (1:300; R&D Systems), mouse anti-arginine-1 (1:100; BD Biosciences), goat anti-TNF-α (1:20; R&D Systems), rabbit anti-IL-1β (1:50; Santa Cruz Biotechnology, Inc.), mouse anti-CD36 (1:100; BD Biosciences), goat anti-IGF-1 (1:20; R&D Systems), rabbit anti-BDNF (1:200; Alomone Labs), mouse anti-RPE65 (1:100; Novus Biologicals), mouse anti-β-dystroglycan (1:50; Abcam), and chicken anti-laminin (1:500; Sigma-Aldrich). The M.O.M. immunodetection kit (Vector Laboratories) was used to detect mouse primary mononclonal antibodies. For labeling of activated myeloid cells, FITC-conjugated Bandeiraea simplicifolia isolectin B4 (IB-4; 1:40; Sigma-Aldrich) was added for 1 h to the secondary antibody solution. Secondary antibodies used included Cy2/Cy3-conjugated donkey anti-mouse, anti-rabbit, anti-goat, or anti-chicken antibodies (1:150–1:200; all from Jackson ImmunoResearch Laboratories, Inc.). Cy2-streptavidin was used for goat anti-GFP staining. The slides were exposed to Hoechst stain (1:2,000; Invitrogen) for 1 min for nuclear staining. For microscopic analysis, a fluorescence microscope (Eclipse 80i; Nikon) was used. The fluorescence microscope was equipped with a digital camera (DXM1200F; Nikon) and with either a 20× NA 0.50 or 40× NA 0.75 objective lens (Plan Fluor; Nikon). Recordings were made on postfixed tissues at 24°C using NIS-Elements, F3 (Nikon) acquisition software. Images were cropped, merged, and optimized using Photoshop, and arranged using Illustrator (both Adobe).

Isolation of RPE and retina and flow cytometry

Following intracardiac perfusion with PBS, eyes were gently dissected in HBSS under a binocular microscope to separately obtain eye cups (RPE, choroid and sclera) and retinas, which were processed to single-cell suspensions, as previously described (Kerr et al., 2008b). The following fluorochrome-labeled mAbs were purchased from BioLegend or eBioscience and used according to the manufacturers’ protocols: PE-conjugated anti-CD11b antibody; PerCP-cy5.5-conjugated anti-Ly6C antibody; allophycocyanin (APC)-conjugated anti-CD45.2 and TCRβ antibodies; FITC-conjugated anti-CD45.2 and CD11b antibodies; and Pacific Blue/Brilliant Violet-conjugated anti-CD45.2, CD11b, and TCRβ antibodies. Cells were analyzed on a FACS LSR II cytometer using FACS Diva software (BD Biosciences). Analysis was performed with FlowJo software (Tree Star, Inc.). In each experiment, relevant negative and positive control groups were used to determine the populations of interest and to exclude the others.

Quantitative real-time PCR

Total RNA was extracted separately from RPE complex and retinas using RNA MicroPrep kit (Zymo Research). mRNA was converted into cDNA using High Capacity Reverse Transcription Kit (Applied Biosystems; AB) for RPE, or qScript cDNA Synthesis Kit (Quanta Biosciences) for retinas. The expression of specific mRNAs was assayed using fluorescence-based quantitative real-time PCR with selected gene-specific primer pairs:

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Primer Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gapdh</td>
<td>Forward: 5′-AATGTTGCGGTCGCTGATCTGA-3′</td>
</tr>
<tr>
<td>Actb</td>
<td>Forward: 5′-TGACACACACAGAGTACCAGTA-3′</td>
</tr>
<tr>
<td>Ifngr1</td>
<td>Forward: 5′-TGGTTAGAAGAAAAGAAAGGAG-3′</td>
</tr>
<tr>
<td>Ifngr2</td>
<td>Forward: 5′-TGGTTAGAAGAAAAGAAAGGAG-3′</td>
</tr>
<tr>
<td>Tnfr1</td>
<td>Forward: 5′-CTTCTACATTTAATGTGCCGAA-3′</td>
</tr>
<tr>
<td>Tgfb2</td>
<td>Forward: 5′-AACTTCTGAGCCCGCCTGCTC-3′</td>
</tr>
<tr>
<td>Tnf</td>
<td>Forward: 5′-AACTTCTGAGCCCGCCTGCTC-3′</td>
</tr>
<tr>
<td>Il1β</td>
<td>Forward: 5′-TGGTTAGAAGAAAAGAAAGGAG-3′</td>
</tr>
<tr>
<td>Il1a</td>
<td>Forward: 5′-TGGTTAGAAGAAAAGAAAGGAG-3′</td>
</tr>
<tr>
<td>Il2a</td>
<td>Forward: 5′-TGGTTAGAAGAAAAGAAAGGAG-3′</td>
</tr>
</tbody>
</table>

Reactions were performed using AB Fast SYBR® Green PCR Master Mix. Each sample was run in triplicate. Amplification conditions were as follows: 95°C for 20 s, followed by 40 cycles of 95°C for 3 s, 60°C for 30 s. Dissociation curves showed a single species for each primer combination. The relative amounts of mRNA were calculated using the standard curve method and normalized to either Actb (β-actin; RPE complex) or Gapdh (retinas). All quantitative real-time PCRs were performed and analyzed using the StepOnePlus Real-Time PCR System (AB).

In vivo fluorescence imaging

Mice were anesthetized and gently immobilized using a plastic apparatus. For visualization of the retina, a drop of 1% atropine sulfate
followed by 10% phenylephrine (both from Dr. Fischer) were used to dilate the pupil, and a drop of ophthalmic lubricant (Cellusan, Dr. Fischer) was used to allow placement of a glass coverslip on the eye.

Mice were placed under a Mono Zoom Microscope MVX10 (Olympus, Japan) equipped with a fluorescence illuminator and a Pixelfly QE charge-coupled device (CCD) camera (PCO, Kelheim, Germany). The excitation and emission for the near-infrared (NIR) filter set was 710/50 nm and 810/90 nm (long pass), respectively. The green filter set was 475/30 nm for excitation and 530/40 nm for emission. Fluorescence exposure time was 50 ms. Images were acquired using the Camware camera-controlling software program (PCO). Image analysis was performed using Fiji/ImageJ software (Schindelin et al., 2012).

Statistical analysis

Sample sizes were chosen with adequate statistical power on the basis of the literature and past experience. Levene’s test was used to check equality of variance. In the case of equal variances, data were analyzed using unpaired Student’s t-test to compare between two groups, or by one- or two-way ANOVA to compare several groups. Tukey’s HSD or Bonferroni post test were used for follow-up pair-wise comparison of groups after the null hypothesis was rejected ($P < 0.05$). In the case of unequal variances, data were log-transformed to achieve equal variances when possible; otherwise, the Mann–Whitney U-test was used to compare between two groups and the Kruskal–Wallis test was used to compare several groups, followed by Dunn’s test. Results are presented as mean ± SE, and y-axis error bars in the graphs represent SE. n represents the number of animals/biological replicates. Animal inclusion and exclusion criteria were pre-established according to the IACUC. Data points were excluded from analysis if they were more than 2 standard deviations away from the mean.

Expanded View for this article is available online.

Acknowledgements

We thank Dr. Gilad Kunis, Dr. Catarina Raposo, Merav Cohen and Alexander Kertser for their assistance with i.v. injections and monocyte purification; Dr. Tamara Berkutzki for histological processing and assistance with immunostaining; Dr. Jiawu Zhao from the group of Prof. Heping Xu for useful tips on RPE processing; Margalit Azoulay for handling the animals; Dr. Kuti Baruch for critical reading; and Dr. Shelley Schwarzbaum for editing the manuscript. M. Schwartz holds the Maurice and Ilse Katz Professorial Chair in Neuroimmunology. This study was supported by a European Research Council (E.R.C.) grant (322835) and a European Union Seventh Framework Programme (FP7) grant (279017) given to M. Schwartz.

Author contributions

IB, under the mentoring of MS, conceived the general ideas of this study, designed and performed the experiments, analyzed and interpreted the data, and prepared it for presentation. KR performed and analyzed some of the experiments and provided critical discussion. VK assisted with designing and performing the live imaging experiments and their analysis. The manuscript was written by IB and MS.

Conflict of interest

The authors declare that they have no conflict of interest.

References

The RPE as a route of monocyte entry to the eye Inbal Benhar et al

The EMBL Journal

