Supplementary Information

Supplementary Figure Legends

Figure S1. Expression of miRNAs in mouse models, corticosterone levels, and genome browser data mining. Related to Figure 1

A Expression levels of miRNAs 379, 382, 541, 134, and 409-5p in livers of wt and GR dimerization-deficient (GRdim) mice treated daily with dexamethasone (DEX, 1 mg/kg BW) or vehicle (2% EtOH in isotonic saline) (n=3-5) for 28 days. Bar graphs show mean ± SEM; ANOVA (with post-hoc test): ***p<0.001 or **p<0.01

B Distribution plot of mean microarray signal intensity of hepatic miRNAs detected in the screening. Data are from 544 miRNAs detected in 32 biological replicates. Q1 and Q3 are the 1st and 3rd quartile, respectively.

C Correlation of hepatic mmu-miR-379 levels with serum corticosterone in wt, db/db, NZB, and NZO mice. Given are the correlation coefficients and the p-values.

D Hepatic miR-379 levels in wild-type mice treated with negative control (NC) or GR-specific miRNA rAAV (n=4). Bar graphs show mean ± SEM; t-test: ***p<0.001

E Quantitative PCR analysis of miR-379 expression levels in primary hepatocytes treated with 1 \textmu M dexamethasone or vehicle (2% EtOH in PBS) for 9 h. Bar graphs show mean ± SEM; t-test: *p<0.05

F Bioinformatic analysis using the UCSC Genome Browser (http://genome.ucsc.edu/) showing the putative miR-379 promoter, including glucocorticoid receptor (GR) binding sites derived from ChIP-Seq studies, DNase susceptible regions, and regions of histone trimethylation. Bar
graphs show mean ± SEM; t-test or ANOVA (with post-hoc test): ***p<0.001, ***p<0.01, or *p<0.05.
Figure S2. Metabolic phenotypes upon miR-379 inhibition and over-expression. Related to Figure 2

A Northern blot of miR-379 in C57Bl/6J mice treated with anti-miR-379 or scrambled control locked-nucleic acid (LNA) (n=5).

B Serum alanine aminotransferase (ALT) levels of same mice as in A.

C RT-qPCR levels of miR-379 in comparison to miRNAs 411, 382, and 541 from same animals as in A. Bar graphs show mean ± SEM; ANOVA (with post-hoc test): ***p<0.001

D – F Liver glycogen (D), triglyceride (E), and cholesterol (F) of same animals as in A. Bar graphs show mean ± SEM.

G Blood glucose levels during a glucose tolerance test (GTT) of wt mice treated with PBS, scrambled or anti-miR-379 LNA. Bar graphs show mean ± SEM.

H Cholesterol profiles of FPLC-fractionated serum of same mice as in A under fed conditions. VLDL, IDL/LDL, and HDL peaks are indicated.

I HOMA-IR of same mice as in A. Bar graphs show mean ± SEM; t-test: **p<0.01

J Protein levels of total and phosphorylated FoxO1 (78-82 kDa) in mice upon treatment with anti-miR-379 or scrambled control LNA.

K RT-qPCR levels of Pepck1 in mice upon treatment with anti-miR-379 or scrambled control LNA. Bar graphs show mean ± SEM; t-test: ***p<0.001

L Blood glucose levels during a pyruvate tolerance test (PTT) of wt mice treated with scrambled or anti-miR-379 LNA (n=5). Line graphs show mean ± SEM; ANOVA (with post-hoc test): *p<0.05

M Fasting blood glucose of same mice as in A. Bar graphs show mean ± SEM.
N Northern blot of miR-379 in livers of wt mice treated with isotonic saline, rAAV negative control (NC) or rAAV for miR-379 overexpression (n=4).

O Serum ALT levels of same mice as in N.

P, Q Total serum cholesterol (P) and serum cholesterol profile (Q) derived from FPLC-analysis of same mice as in N. VLDL, IDL/LDL, and HDL peaks are indicated. Bar graphs show mean ± SEM.
Figure S3. Metabolic functional assays and miR-379 targets. Related to Figure 3

A Normalized oxygen consumption rate (OCR) of Hepa1-6 cells treated with anti-miR-379 or scrambled control tough decoy construct (n=8). Data generated using XF96 Extracellular Flux Analyser (Seahorse).

B Abdominal white adipose tissue lipoprotein lipase (LPL) activity in C57Bl/6J mice treated with anti-miR-379 or scrambled control LNA (n=5). Bar graphs show mean ± SEM.

C Hepatic VLDL release in db/db mice treated with anti-miR-379 or scrambled control LNA (n=7). Times after tyloxapol injection are indicated. Data are mean ± SEM; ANOVA (with post-hoc test): *p<0.05.

D, E Organ distribution after 4 minutes (D) and serum VLDL ³H-triolein clearance (E) in C57Bl/6J mice treated with anti-miR-379 or scrambled control LNA (n=6-7). Mice were fasted for 6 hours and given an intravenous dosage of VLDL ³H-triolein. Data are mean ± SEM; t-test: **p<0.01

F Serum VLDL triglyceride levels in a lipid tolerance test in db/db mice treated with an anti-miR-379 or scrambled control Tough Decoy (TuD) construct delivered by rAAV (n=5-6). Mice were fasted for 16 hours and given a 100 µL oral fat load of olive oil spiked-in with ³H-triolein. Data are mean ± SEM; ANOVA (with post-hoc test): ***p<0.001, **p<0.01, or *p<0.05.

G VLDL specific activity of animals in F.

H Intestinal ³H-triolein radioactivity of animals in F.

I, J Vertebrate-conserved miR-379 binding sites in the coding sequences of the respective LSR (I) and LDLR (J) transcripts as predicted by RNA22.

K Quantitative densitometric analysis of Western blot in Figure 3C. Data are mean ± SEM; ANOVA (with post-hoc test): **p<0.01
L) Quantitative densitometric analysis of Western blot in Figure 3D. Data are mean ± SEM; ANOVA (with post-hoc test): *p<0.05
Figure S4. Functional characterization of the miR-379-identified targets. Related to Figure 3

A Schematic of miR-379 target identification and characterization. Web-based programs used include RNA22, DAVID, and MiRTiF.

B - D Western blot of liver extracts (B) from *wt* mice treated with control or LSR shRNA-containing adenovirus and with either anti-miR-379 or scrambled control LNA (n=7). Densitometric analysis of the Western blot for LDLR (C) and LSR (D) proteins. Bar graphs show mean ± SEM; ANOVA (with post-hoc test): ***p<0.001

E, F Serum triglyceride (E) and cholesterol (F) profiles of FPLC-fractionated serum of same mice as in B-D. VLDL, IDL/LDL, and HDL peaks are indicated.

G Quantitative miR-379 PCR levels from livers of *wt* or *LDLRKO* mice treated with control or LSR shRNA-containing adenovirus and with anti-miR-379 or scrambled control LNA (n=7). Bar graphs show mean ± SEM; ANOVA (with post-hoc test): ***p<0.001

H, I Quantitative densitometric analysis of Western blot in Figure 3E for LDLR (H) and LSR (I) proteins. Bar graphs show mean ± SEM; ANOVA (with post-hoc test): ***p<0.001 or **p<0.01

J Cholesterol profiles of FPLC-fractionated serum of *LDLRKO* mice treated with control or LSR shRNA-containing adenovirus and with either anti-miR-379 or scrambled control LNA (n=7). Same animals as in G. VLDL, IDL/LDL, and HDL peaks are indicated.
Figure S5. Other metabolic phenotypes affected by miR-379 inhibition in obese mice.

Related to Figure 4

A Expression levels of hepatic miR-379 in db/db mice treated with anti-miR-379 or scrambled LNA (n=7) as determined by qPCR. Bar graphs show mean ± SEM; t-test: ***p<0.001

B Fasting blood glucose levels of db/db mice treated with anti-miR-379 or scrambled control LNA (n=7 per group). Data show mean ± SEM; t-test: **p<0.01

C, D Total serum cholesterol (C) and serum cholesterol profiles (D) derived from FPLC-analysis of same mice as in A. VLDL, IDL/LDL, and HDL peaks are indicated.

E Serum corticosterone levels measured by ELISA of same mice as in A.

F Quantitative PCR analyses of lipogenic genes in livers of mice in A: Pparg (Peroxisome proliferator-activated receptor gamma), Acc (Acetyl-CoA carboxylase), Fasn (Fatty acid synthase), Scd1 (Stearoyl-CoA desaturase 1), Srebp (Sterol regulatory element-binding protein), and Lipin. Data show mean ± SEM; t-test: *p<0.05

G Liver sections stained with Oil Red O and hematoxylin from representative animals in A.

H Quantitative densitometric analysis of Western blot in Figure 4D. Bar graphs show mean ± SEM; ANOVA (with post-hoc test): *p<0.05

I Expression levels of hepatic miR-379 in NZO mice treated with anti-miR-379 or scrambled LNA (n=7) as determined by qPCR. Bar graphs show mean ± SEM; t-test: ***p<0.001

J, K Serum triglycerides (J) and serum cholesterol profile (K) derived from FPLC-analysis of same mice in I. Bar graphs show mean ± SEM; t-test: **p<0.01

L Quantitative densitometric analysis of Western blot in Figure 4F. Bar graphs show mean ± SEM; ANOVA (with post-hoc test): **p<0.01
Figure S6. Phenotypes of mice upon miR-379 inhibition using rAAV-delivered tough decoy.

Related to Figure 4

A Expression levels of miR-379 from livers of db/db mice treated with anti-miR-379 or scrambled control Tough Decoy (TuD) construct delivered by rAAV (n=8) as determined by qPCR. Bar graphs show mean ± SEM; t-test: **p<0.01

B, C Serum triglycerides (B) and cholesterol (C) of same mice as in A. Bar graphs show mean ± SEM; t-test: *p<0.05

D Serum cholesterol profile as determined by FPLC-analysis of same mice as in A. VLDL, IDL/LDL, and HDL peaks are indicated.

E Quantitative PCR analysis of miR-379 from livers of C57Bl/6J mice fed with low-fat (10%) or high-fat (60%) diet for 12 weeks and treated with either anti-miR-379 or scrambled control Tough Decoy (TuD) construct delivered by rAAV (n=7). Bar graphs show mean ± SEM; ANOVA (with post-hoc test): *p<0.05

F – K Body weight (F), serum cholesterol (G), blood glucose (H), serum triglyceride (I) & cholesterol profiles of FPLC-fractionated serum (J) and serum corticosterone levels (K) of same mice as in E. Bar graphs show mean ± SEM; ANOVA (with post-hoc test): ***p<0.001 or *p<0.05; n.s.: not significant
Supplementary Table Legends

Suppl. Table 1: Demographic and serum profiles of obese cases (n=64) and healthy controls (n=10) recruited in the study.

Suppl. Table 2: Nucleotide sequences of LNAs, tough decoy (TuD) inserts, dual-luciferase vector inserts, miRNA mimics, and ChIP-qPCR primers.
Figure S1

A

miR-379

miR-382

miR-541

miR-134

miR-409-5p

Vehicle

DEX

Vehicle

DEX

Vehicle

DEX

Vehicle

DEX

Vehicle

DEX

B

N=544

miR-122

miR-379

C

Corr. coef. = 0.908

Corr. coef. = 0.775

p = 0.00180

p = 0.00238

D

Relative miR Levels

(miR-379/snoRNA-202)

rAAV-miR-NC

rAAV-miR-GR

Vehicle

DEX

Vehicle

DEX

Vehicle

DEX

E

Relative miR Levels

(miR/snoRNA-202)

Vehicle

DEX

Vehicle

DEX

Vehicle

DEX

F

cnr14 (32.31)

Layered H3K4Me1

Layered H3K4Me3

Layered H3K27Ac

DNase Clusters

ENCODE

Digital

DNase

Hypersensitivity

Clusters

http://genome.ucsc.edu/
Figure S2

A) Scrambled Control vs. Anti-miR-379 LNA

B) Serum ALT, U/L

<table>
<thead>
<tr>
<th>Normal Range</th>
<th>Scrambled Control</th>
<th>Anti-miR-379 LNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 – 77</td>
<td>37.06 ± 11.08</td>
<td>27.57 ± 8.96</td>
</tr>
</tbody>
</table>

Note: Data are mean ± SEM; p = 0.76

C) Relative miR Levels

D) Liver Glycerogen (μmol/g Liver)

E) Liver TG (μmol/g Liver)

F) Liver Cholesterol (μmol/g Liver)

G) Glucose, mM

H) Cholesterol, μg/fraction

I) HOMA-IR

J) p-FoxO1 (S256)

K) Relative mRNA Levels

L) Blood Glucose, mM

M) Blood Glucose, mM

N) PBS vs. rAAV-miR-NC vs. rAAV-miR-379 OE

O) Serum ALT, U/L

<table>
<thead>
<tr>
<th>Normal Range</th>
<th>rAAV-miR-NC</th>
<th>rAAV-miR-379 OE</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 – 77</td>
<td>20.31 ± 4.00</td>
<td>19.21 ± 11.36</td>
</tr>
</tbody>
</table>

Note: Data are mean ± SEM; p = 0.673

Note: Data are mean ± SEM; p = 0.76
Figure S3

A BSA + DMSO
- Scrambled TuD Control
- TuD-Anti-miR-379
- Mock Transfection

B LPL Activity (nmol/mg/min)
- Scrambled Control
- Anti-miR-379 LNA

C Serum TG, mM
- Scrambled Control
- Anti-miR-379 LNA

D Time [min]
- Scrambled Control
- Anti-miR-379 LNA

E [3H]-TG, μmol
- Scrambled Control
- Anti-miR-379 LNA

F Serum VLDL TG, mM
- Scrambled Control
- Anti-miR-379 LNA

G LSR Coding Sequence
- Human
- Mouse
- Cow
- Rat
- Dog
- Zebrafish

H LDLR Coding Sequence
- Human
- Mouse
- Zebrafish

I LDLR Specific Activity, [3H]-TG AUC/(mM*4h)/(mM*4h)
- TuD-Scrambled
- TuD-Anti-miR-379

J Relative Signal Intensity, AU
- LDLR or LSR/VCP
- Scrambled Control
- Anti-miR-379 LNA

K VLDL Specific Activity, [3H]-TG, μM
- TuD-Scrambled
- TuD-Anti-miR-379

L Tissue clearance (absolute), nmol/h [3H]-TG
- Liver
- BAT
- pgWAT
- GCM
Figure S4

A. miR-379 Predicted Targets

B. miR-379 targets in the liver (n=51)

C. Functional Annotation Clustering

D. miR-379 KD/OE Phenotypes

E. miR-379 KD/OE Phenotypes

F. miR-379 KD/OE Phenotypes

G. miR-379 KD/OE Phenotypes

H. miR-379 KD/OE Phenotypes

I. miR-379 KD/OE Phenotypes

J. miR-379 KD/OE Phenotypes
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Non-T2D, Obese</th>
<th>Diabetic-Obese</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at surgery</td>
<td>46 ± 9</td>
<td>49 ± 10</td>
<td>54 ± 5</td>
</tr>
<tr>
<td>Gender (Male/Female)*</td>
<td>11/26</td>
<td>10/17</td>
<td>5/5</td>
</tr>
<tr>
<td>Body weight, kg</td>
<td>131.6 ± 21.6z</td>
<td>130.5 ± 19.4z</td>
<td>69.9 ± 8.3</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>45.1 ± 6.1z</td>
<td>45.2 ± 6.5z</td>
<td>23.8 ± 0.8</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>141.9 ± 13.2z</td>
<td>143.1 ± 15.1z</td>
<td>120.4 ± 2.1</td>
</tr>
<tr>
<td>Diastolic BP, mm Hg</td>
<td>90.4 ± 8.2z</td>
<td>92.1 ± 9.8z</td>
<td>80.9 ± 1.5</td>
</tr>
<tr>
<td>Fasting Plasma Glucose, mM</td>
<td>4.9 ± 0.5z</td>
<td>6.5 ± 1.5z</td>
<td>5.2 ± 0.1</td>
</tr>
<tr>
<td>Fasting Plasma Insulin, mU/L</td>
<td>10.8 ± 7.5z</td>
<td>22.8 ± 8.2z</td>
<td>12.1 ± 1.2</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>2.4 ± 1.8z</td>
<td>6.6 ± 2.8z</td>
<td>0.4 ± 0.0</td>
</tr>
<tr>
<td>Total Cholesterol, mM</td>
<td>5.1 ± 1.3</td>
<td>5.5 ± 1.2</td>
<td>4.8 ± 0.1</td>
</tr>
<tr>
<td>LDL Cholesterol, mM</td>
<td>3.1 ± 1.1</td>
<td>3.5 ± 1.2</td>
<td>2.9 ± 0.1</td>
</tr>
<tr>
<td>HDL Cholesterol, mM</td>
<td>1.1 ± 0.2z</td>
<td>1.2 ± 0.2z</td>
<td>1.4 ± 0.1</td>
</tr>
<tr>
<td>Free Fatty Acids, mM</td>
<td>0.6 ± 0.5z</td>
<td>0.8 ± 0.6z</td>
<td>0.2 ± 0.0</td>
</tr>
<tr>
<td>Leptin, ng/mL</td>
<td>46.5 ± 20.9z</td>
<td>42.3 ± 22.5z</td>
<td>9.0 ± 1.3</td>
</tr>
<tr>
<td>Medications</td>
<td>None</td>
<td>Metformin alone or in combination with Liraglutide or Pioglitazone</td>
<td>None</td>
</tr>
</tbody>
</table>

* Counts
** Sig. vs Control
z Sig. Non-T2D, obese vs Diabetic-obese

Data are Mean ± SD
Supplemental Table 2

<table>
<thead>
<tr>
<th>LNA Oligonucleotides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-miR-379</td>
<td>GTTCCATAGTCTACC</td>
</tr>
<tr>
<td>LNA Scrambled</td>
<td>ACGTCTATACGCCCA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tough Decoy Inserts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TuD-Anti-miR-379</td>
<td></td>
</tr>
<tr>
<td>Fwd</td>
<td>TCAGACGACGCGCTAGGATCATCAACCCCTACGTTTCAACCTTTAGTTCTACCAACAGATATTCTTGTCACAGAATAACCCCTACGTTTCAACCTTTAGTTCTACCA</td>
</tr>
<tr>
<td>Rev</td>
<td>GATCTGACGGGCTAGGATCATCTTTTGTGAGCTACTAGATTGGAAGTGGCTAGGGTTGATTTCTTGAGCAGGATCTTACAGATTTGGAAGTGGCTAGGGTTGATTTCTTG</td>
</tr>
<tr>
<td>TuD-Scrambled</td>
<td></td>
</tr>
<tr>
<td>Fwd</td>
<td>TCAGACGACGCGCTAGGATCATCAACCCCTACGTTTCAACCTTTAGTTCTACCAACAGAATAACCCCTACGTTTCAACCTTTAGTTCTACCA</td>
</tr>
<tr>
<td>Rev</td>
<td>GATCTGACGGGCTAGGATCATCTTTTGTGAGCTACTAGATTGGAAGTGGCTAGGGTTGATTTCTTGAGCAGGATCTTACAGATTTGGAAGTGGCTAGGGTTGATTTCTTG</td>
</tr>
</tbody>
</table>

Note: Sequences in italics are the SalI and BglII overhangs; Underlined sequences are the miR-379 binding sites or the scrambled sequence.

<table>
<thead>
<tr>
<th>psiCHECK™-2 Vector Inserts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LSR_MBS</td>
<td></td>
</tr>
<tr>
<td>Fwd</td>
<td>TCAGAAGAGCTTTAGTGACACTACACTGCACCTACCAGC</td>
</tr>
<tr>
<td>Rev</td>
<td>GCCGCGTGGAGGTGCTAGTGATGTCTACTAAAGCTTAC</td>
</tr>
<tr>
<td>LSR_mutMBS</td>
<td></td>
</tr>
<tr>
<td>Fwd</td>
<td>TCAGAAGAGCTTTAGTGACACTACACTGCACCTACCAGC</td>
</tr>
<tr>
<td>Rev</td>
<td>GCCGCGTGGAGGTGCTAGTGATGTCTACTAAAGCTTAC</td>
</tr>
<tr>
<td>LDLR_MBS</td>
<td></td>
</tr>
<tr>
<td>Fwd</td>
<td>TCAGAAGAGCTTTAGTGACACTACACTGCACCTACCAGC</td>
</tr>
<tr>
<td>Rev</td>
<td>GCCGCGTGGAGGTGCTAGTGATGTCTACTAAAGCTTAC</td>
</tr>
<tr>
<td>LDLR_mutMBS</td>
<td></td>
</tr>
<tr>
<td>Fwd</td>
<td>TCAGAAGAGCTTTAGTGACACTACACTGCACCTACCAGC</td>
</tr>
<tr>
<td>Rev</td>
<td>GCCGCGTGGAGGTGCTAGTGATGTCTACTAAAGCTTAC</td>
</tr>
</tbody>
</table>

Note: Sequences in italics are the XhoI and NotI overhangs; Underlined sequences are the miR-379 binding sites or the mutated sequence; MBS – MicroRNA Binding Site

<table>
<thead>
<tr>
<th>MicroRNA Mimics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mmu-miR-379</td>
<td>UGGUAAGAUAUUGAAACGUAG (MIMAT0000743)</td>
</tr>
<tr>
<td>cel-miR-293b</td>
<td>UUGUACUAACAAAAAGUACUG (MIMAT0000295)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GR ChIP qPCR Primers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TBP Exon 3</td>
<td></td>
</tr>
<tr>
<td>Fwd</td>
<td>CCCATCTTTAGTCCAAATGATGC</td>
</tr>
<tr>
<td>Rev</td>
<td>CTGCTGCTGCTTTGGTCTC</td>
</tr>
<tr>
<td>GBR1</td>
<td></td>
</tr>
<tr>
<td>Fwd</td>
<td>TTCTCTGCTCAACCAGGAAGGTGC</td>
</tr>
<tr>
<td>Rev</td>
<td>CCAGGCAGACGCATACCCCATGCA</td>
</tr>
<tr>
<td>GBR2</td>
<td></td>
</tr>
<tr>
<td>Fwd</td>
<td>GGGTTGTGGAAATAGGTGCTCA</td>
</tr>
<tr>
<td>Rev</td>
<td>TGCAACAGTGCTAGGATCAGTCA</td>
</tr>
<tr>
<td>GBR3</td>
<td></td>
</tr>
<tr>
<td>Fwd</td>
<td>CCAGGAGAGATTTAGCAGCATTAGT</td>
</tr>
<tr>
<td>Rev</td>
<td>ACTAGAACATTCTGTGTCGCCAGCC</td>
</tr>
</tbody>
</table>