Legends for Supplementary Figures

Supplementary Figure 1 Expression of H3.3-YFP, H3K36me3, and STAT1-P in WT and Whsc1−/− cells. (A) Acid extracted histones from WT and Whsc1−/− cells expressing H3.1-YFP or H3.3-YFP were analyzed for total H3, H3K36me3, and H3-YFP by immunoblotting using respective antibodies. (B) Increasing amount of acid extracted histones from WT and Whsc1−/− cells (2, 4, and 8 µg) were tested for H3K36me3 as above. H3 was tested as a loading control. (C) WT and Whsc1−/− cells were stimulated with IFN for indicated times and nuclear extracts were tested for phosphorylated STAT1 (STAT1-P) by immunoblotting with specific antibody. β-ACTIN was used as a loading control.

Supplementary Figure 2 Levels of protein expressed in WT and Whsc1−/− cells upon IFN stimulation. WT and Whsc1−/− cells expressing H3.3-YFP were stimulated with IFN and whole cell extracts were tested for expression of indicated proteins at indicated times by immunoblotting using respective antibodies.

Supplementary Figure 3 Accumulation of total H3 on the ISGs is not affected by the absence of WHSC1. WT and Whsc1−/− cells were treated with IFN for indicated times and accumulation of total H3 in ISGs and Gtf2b was tested by ChIP using a specific antibody. Values represent the average of duplicate determinations +/- S.D.

Supplementary Figure 4 Reduction of ISG mRNA induction in Whsc1 knockdown cells. WT cells were transiently transfected with Whsc1 siRNA or scrambled control siRNA, and treated with IFN for indicated times. Expression of transcripts for the ISGs in above cells was measured by qRT-PCR. Gtf2b transcripts were tested as a control. Values represent the average of two determinations +/- S.D.

Supplementary Figure 5 Recruitment of WHSC1 and H3.3 in ISGs. (A-C) WT and Whsc1−/− cells treated with IFN for indicated times were analyzed for the recruitment of WHSC1 (A), HIRA (B), and H3K36me3 (C) to the ISGs and Gtf2b by ChIP analyses. Values represent the average of duplicate determinations +/- S.D. (D) ChIP analysis was
performed for NIH3T3 cells expressing H3.3-YFP or H3.3K36R-YFP using anti-GFP antibody. Values represent the average of duplicate determinations +/- S.D.

Supplementary Figure 6 IFN induced recruitment of H3K36me2 and SETD2. WT and Whsc1−/− cells were treated with IFN for indicated times and ChIP analyses were performed to detect recruitment of SETD2 (A) and H3K36me2 (B) to the ISGs and Gtf2b. Values represent the average of duplicate determinations +/- S.D.

Supplementary Figure 7 Relative levels of H3.3-YFP and H3.3K36R-YFP. (A) Acid extracted histones from NIH3T3 cells expressing H3.1-YFP, H3.1K36R-YFP, H3.3-YFP, or H3.3K36R-YFP were analyzed for H3K36me3, H3-YFP, and H3 by immunoblotting using respective antibodies. (B) NIH3T3 cells expressing H3.3-YFP and H3.3K36R-YFP were stimulated with IFN for indicated times. Nuclear extracts were tested for expression of H3.3-YFP and H3.3K36R-YFP by immunoblotting with anti-GFP antibody. H3 was used as a loading control.

Supplementary Figure 8 IFN induced recruitment of Pol II to the ISGs. WT and Whsc1−/− cells were treated with IFN for indicated times and ChIP analyses were performed to detect recruitment of Pol II-2P (A), Pol II-HP (B), Pol II (C), and Pol II-5P (D) to the ISGs and Gtf2b. Values represent the average of duplicate determinations +/- S.D.

Supplementary Figure 9 IFN induced recruitment of P-TEFb and BRD4 to the ISGs. WT and Whsc1−/− cells were treated with IFN for indicated times and ChIP analyses were performed to detect recruitment of CDK9 (A) and BRD4 (B) to the ISGs and Gtf2b. Values represent the average of duplicate determinations +/- S.D.

Supplementary Figure 10 Reintroduction of WHSC1 deletions in Whsc1−/− cells. (A) Whsc1−/− cells transiently expressing WT WHSC1 or its deletion constructs were treated with IFN for indicated times and expression of Whsc1 and ISGs mRNAs were tested by qRT-PCR. Values represent the average of two determinations +/- S.D. (B) Whole cell
extracts from the above cells were tested for WHSC1 protein expression by immunoblotting.

Supplementary Figure 11 Reduction of H3.3 deposition and ISG mRNA induction in *Hira* knockdown cells. (A) NIH3T3 cells transduced with a vector for *Hira* shRNA or scrambled control shRNA were treated with IFN for indicated times. mRNA levels of ISGs were measured by qRT-PCR. Values represent the average of two determinations +/- S.D. *Gtf2b* transcripts were tested as a control. (B) *Hira* and control knockdown cells expressing H3.3-YFP were analyzed for the incorporation of H3.3 in ISGs and *Gtf2b* by ChIP analysis using anti-GFP antibody. Values represent the average of duplicate determinations +/- S.D. (C) ChIP analysis was performed for *Hira* and control knockdown cells to detect recruitment of WHSC1. Values represent the average of duplicate determinations +/- S.D.

Supplementary Figure 12 Reduction of H3.3 deposition and ISG mRNA induction in *Brd4* knockdown cells. (A) NIH3T3 cells transduced with a vector for *Brd4* shRNA or scrambled control shRNA were treated with IFN for indicated times. mRNA levels of ISGs were measured by qRT-PCR. Values represent the average of two determinations +/- S.D. *Gtf2b* transcripts were tested as a control. (B and C) *Brd4* and control knockdown cells expressing H3.3-YFP were analyzed for recruitment of BRD4 (B) and WHSC1 (C) by ChIP. Values represent the average of duplicate determinations +/- S.D. (D) *Brd4* and control knockdown cells expressing H3.3-YFP were analyzed for the incorporation of H3.3 in ISGs and *Gtf2b* by ChIP using anti-GFP antibody. Values represent the average of duplicate determinations +/- S.D.

Supplementary Figure 13 Effect of the bromodomain inhibitor JQ1 on ISG mRNA induction and H3.3 deposition. (A-C) WT cells were treated with IFN for indicated times. JQ1 was added 1 h prior to IFN treatment. ChIP assays were performed to detect accumulation of BRD4 (A), WHSC1 (B), or H3.3-YFP (C) in ISGs and *Gtf2b* using respective antibodies. Values represent the average of duplicate determinations +/- S.D.
(D) Above cells were tested for ISGs and Gtf2b transcripts expression. Values represent the average of two determinations +/- S.D.

Supplementary Figure 14 Effect of P-TEFb inhibitor Flavopiridol in ISG mRNA induction and H3.3 deposition. (A-C) WT cells were treated with IFN for indicated times. Flavopiridol was added simultaneously with IFN. ChIP assays were performed to detect recruitment of CDK9 (A) or WHSC1 (B), or H3.3-YFP (C) in ISGs and Gtf2b using respective antibodies. (C) ChIP analysis was performed for WT cells expressing H3.3-YFP or using anti-GFP antibody. Values represent the average of duplicate determinations +/- S.D. (D) Above cells were tested for ISGs and Gtf2b transcripts expression. Values represent the average of two determinations +/- S.D.

Supplementary Figure 15 Effects of Flavopiridol on IFN induced recruitment of BRD4 and HIRA. WT cells were treated with IFN for indicated times. Flavopiridol was added simultaneously with IFN. ChIP assays were performed to detect recruitment of BRD4 (A) or HIRA (B) in ISGs and Gtf2b using respective antibodies. Values represent the average of duplicate determinations +/- S.D.

Supplementary Figure 16 Expression of BRD4, P-TEFb, WHSC1, and H3.3-YFP in the presence of JQ1 and Flavopiridol, and after UV treatment. (A) WT cells expressing H3.3-YFP were stimulated with IFN at indicated times in the presence of JQ1 or the inactive steroisomer JQ1 (Ctrl). Whole cell extracts were tested for expression of BRD4, WHSC1, and H3.3-YFP by immunoblotting using respective antibodies. H3 was used as a loading control. (B) WT cells expressing H3.3-YFP were stimulated with IFN at indicated times in the presence of Flavopiridol or vehicle (Ctrl). Whole cell extracts were tested for expression of CYCLIN T1, WHSC1, H3.3-YFP, BRD4, and HIRA by immunoblotting using respective antibodies. H3 was used as a loading control. (C) WT and Whsc1^{-/-} cells expressing H3.3-YFP were irradiated with UV-B (4 mJ/cm²). Acid extracts prepared at indicated times were tested for expression of H3.3-YFP by immunoblotting with anti-GFP antibody. H3 was used as a loading control.
Supplementary Figure 1

A

\[
\begin{array}{c|c|c|c|c}
\text{WT} & \text{Whsc1}^-/^- & \text{WT} & \text{Whsc1}^-/^- \\
- H3.3 & - H3.3 & H3.1 & H3.1 \\
\end{array}
\]

B

\[
\begin{align*}
\text{WT} & \quad \text{Whsc1}^-/^- \\
\text{anti-H3K36me3} & \quad \text{anti-H3} \\
\text{H3-YFP} & \quad \text{anti-STAT1-P} \\
\text{anti-H3} & \quad \text{anti-\beta-ACTIN} \\
\end{align*}
\]

C

\[
\begin{align*}
\text{WT} & \quad \text{Whsc1}^-/^- \\
\text{IFN: 0 1 3 (h)} & \quad \text{IFN: 0 1 3 (h)} \\
\text{anti-H3} & \quad \text{anti-\beta-ACTIN} \\
\end{align*}
\]
Supplementary Figure 2

<table>
<thead>
<tr>
<th>Protein/Marker</th>
<th>WT</th>
<th>WT</th>
<th>Whsc1<sup>-/-</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>WHSC1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3.3-YFP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3K36me3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3K36me2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETD2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRD4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYCLIN T1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pol II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pol II-HP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pol II-2P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pol II-5P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table:
- **WT:** 0, 3, 12, 24, 48 (h)
- **Whsc1^{-/-}:** 0, 3, 12, 24, 48 (h)

Graph:
- Western blot for various proteins and markers under different time points and conditions.
Supplementary Figure 3

ChIP: anti-H3 antibody

WT

Ift1

Whsc1⁻/⁻

Oas1a

Stat1

Mx1

Gtf2b

ChIP signal (% input)

-120

-90

-180

-150

-120

2.9k

7k

2.1k

10k

3.9k

41k

3k

15k

3.1k

17.5k

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

time after IFN treatment (h)

ChIP: anti-H3 antibody

WT

Ift1

Whsc1⁻/⁻

Oas1a

Stat1

Mx1

Gtf2b

ChIP signal (% input)

-120

-90

-180

-150

-120

2.9k

7k

2.1k

10k

3.9k

41k

3k

15k

3.1k

17.5k

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

time after IFN treatment (h)
Supplementary Figure 4

- **lfit1 mRNA**
- **Mx1 mRNA**
- **Oas1a mRNA**
- **Gtf2b mRNA**
- **Stat1 mRNA**
- **Whsc1 mRNA**

Ctrl KD vs. *Whsc1 KD* fold induction over time after IFN treatment (h).
Supplementary Figure 5

A: ChIP: anti-WHSC1 antibody

WT Oas1a Whsc1−/−

-90 2.1k 10k

Stat1

-180 3.9k 41k

Mx1

-150 3k 15k

Gtf2b

-120 3.1k 17.5k

B: ChIP: anti-HIRA antibody

WT Oas1a Whsc1−/−

-90 2.1k 10k

Stat1

-180 3.9k 41k

Mx1

-150 3k 15k

Gtf2b

-120 3.1k 17.5k

C: ChIP: anti-H3K36me3 antibody

WT Oas1a Whsc1−/−

-90 2.1k 10k

Stat1

-180 3.9k 41k

Mx1

-150 3k 15k

Gtf2b

-120 3.1k 17.5k

D: ChIP: anti-GFP antibody

H3.3-YFP H3.3K36R-YFP

-90 2.1k 10k

Stat1

-180 3.9k 41k

Mx1

-150 3k 15k

Gtf2b

-120 3.1k 17.5k

(time after IFN treatment (h))
Supplementary Figure 6

A ChIP: anti-SETD2 antibody
 WT Ifit1 Whsc1^{-/-}
 0.1 0.2 0.3
 0.1 0.2 0.3
 0.1 0.2 0.3
 0.1 0.2 0.3
 0.1 0.2 0.3
 0.1 0.2 0.3

B ChIP: anti-H3K36me2 antibody
 WT Ifit1 Whsc1^{-/-}
 -120 2.9k 7k
 -90 2.1k 10k
 -180 3.9k 41k
 -150 3k 15k
 -120 3.1k 17.5k

ChIP signal (% input)

time after IFN treatment (h)
Supplementary Figure 7

A

- H3-K36me3
- H3
- H3-YFP
- anti-GFP
- anti-H3

B

<table>
<thead>
<tr>
<th></th>
<th>IFN:</th>
<th>0</th>
<th>3</th>
<th>12</th>
<th>24</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3.3K36R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H3.3-YFP</th>
<th>anti-GFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3.3K36R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

anti-H3
Supplementary Figure 9

A ChIP: anti-CDK9 antibody
WT Oas1a Whsc1\(^{-/-}\)

B ChIP: anti-BRD4 antibody
WT Oas1a Whsc1\(^{-/-}\)

-90 2.1k 10k
-180 3.9k 41k
-150 3k 15k
-120 3.1k 17.5k

ChIP signal (% input)

time after IFN treatment (h)
Supplementary Figure 10

A

IFN: 0 1 3 6 (h)

Mock

β-ACTIN

WHSC1

β-ACTIN

ΔPWWP

β-ACTIN

ΔHMG

β-ACTIN

ΔPHD

β-ACTIN

Supplementary Figure 10
Supplementary Figure 11

A. Signal (% input)

- **Hira mRNA**: Ctrl KD vs. Hira KD
- **Ifit1 mRNA**: Ctrl KD vs. Hira KD
- **Oas1a mRNA**: Ctrl KD vs. Hira KD
- **Stat1 mRNA**: Ctrl KD vs. Hira KD
- **Mx1 mRNA**: Ctrl KD vs. Hira KD
- **Gtf2b mRNA**: Ctrl KD vs. Hira KD

B. ChIP: anti-GFP antibody

- **Ctrl KD** vs. **Hira KD**: Ifit1 and Hira signals over time.

C. ChIP: anti-WHSC1 antibody

- **Ctrl KD** vs. **Hira KD**: Ifit1 and Hira signals over time.
Supplementary Figure 12

A

- *Oas1a mRNA*
 - Ctrl KD
 - BRD4 KD

- *Stat1 mRNA*
- *Mx1 mRNA*
- *Gtf2b mRNA*

closer to the graph: time after IFN treatment (h)

B

- *ChIP: anti-BRD4 antibody*
 - Ctrl KD
 - Brd4 KD

- *Stat1*
- *Mx1*

- *ChIP signal (% input)*

C

- *ChIP: anti-WHSC1 antibody*
 - Ctrl KD
 - Brd4 KD

- *Stat1*
- *Mx1*

- *ChIP signal (% input)*

D

- *ChIP: anti-GFP antibody*
 - Ctrl KD
 - Brd4 KD

- *Stat1*
- *Mx1*

- *ChIP signal (% input)*

C

Gtf2b
Supplementary Figure 13

A ChIP: anti-BRD4 antibody
 Ctrl Oas1a JQ1
 time after IFN treatment (h)

B ChIP: anti-WHSC1 antibody
 Ctrl Oas1a JQ1
 time after IFN treatment (h)

C ChIP: anti-GFP antibody
 Ctrl Oas1a JQ1
 time after IFN treatment (h)

D Oas1a mRNA
 time
 fold induction
 Ctrl JQ1

Stat1 mRNA
 time
 fold induction
 Ctrl JQ1

Mx1 mRNA
 time
 fold induction
 Ctrl JQ1

Gtf2b mRNA
 time
 fold induction
 Ctrl JQ1
Supplementary Figure 14

A ChIP: anti-CDK9 antibody
- Ctrl
- Oas1a
- Flavopiridol

B ChIP: anti-WHSC1 antibody
- Ctrl
- Oas1a
- Flavopiridol

C ChIP: anti-GFP antibody
- Ctrl
- Oas1a
- Flavopiridol

D
- Oas1a mRNA
- Stat1 mRNA
- Mx1 mRNA
- Gtf2b mRNA
Supplementary Figure 15

A ChIP: anti-BRD4 antibody

Ctrl Ifit1 Flavopiridol

ChIP signal (% input)

B ChIP: anti-HIRA antibody

Ctrl Ifit1 Flavopiridol

ChIP signal (% input)

time after IFN treatment (h)
Supplementary Figure 16

A

<table>
<thead>
<tr>
<th></th>
<th>Ctrl</th>
<th>JQ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN:</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>BRD4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHSC1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3.3-YFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>Ctrl</th>
<th>Flavopiridol</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN:</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CYCLIN T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHSC1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3.3-YFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRD4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIRA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>Whsc1−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV:</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H3.3-YFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>