Antisense now makes sense: dual modulation of androgen-dependent transcription by CTBP1-AS

Ying Ying Sung1 and Edwin Cheung1,2,3,*

1Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore, 2Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore and 3School of Biological Sciences, Nanyang Technological University, Singapore.

*Correspondence to: cheungcwe@gis.a-star.edu.sg

The EMBO Journal (2013) 32, 1653–1654. doi:10.1038/emboj.2013.112; Published online 10 May 2013

Recent advances in genomic approaches for exploring the transcriptome have led to the identification of thousands of novel non-coding RNA (ncRNA) transcripts (Djebali et al., 2012). While some of these ncRNAs have been implicated in the development and progression of cancer and other human diseases, their underlying mechanisms of action remain largely unknown (Esteller, 2011). Takayama et al. (2013) now report the identification of CTBP1-AS, a novel androgen-regulated long ncRNA that promotes prostate cancer growth through sense–antisense repression of the transcriptional co-regulator CTBP1, as well as through the global epigenetic regulation of tumour suppressor genes.

The androgen receptor (AR), a member of the nuclear hormone receptor superfamily of transcription factors, has long been established as a critical driver of prostate cancer and remains functionally important even in advanced stages of the disease (Chng and Cheung, 2012). Previous work from the Inoue lab showed that AR regulates the expression of transcripts located in the intergenic and antisense regions of genes in prostate cancer (Takayama et al., 2011). In the present study, the group identified an antisense transcript, CTBP1-AS at the CTBP1 locus whose androgen-regulated expression is inversely correlated with the expression of CTBP1. Takayama et al. (2013) found that when they depleted CTBP1-AS transcript levels in vitro using siRNA they could abolish the androgen-dependent reduction in CTBP1 protein levels, indicating CTBP1-AS represses the expression of the CTBP1 sense transcript. Notably, the sense–antisense regulation of CTBP1 by CTBP1-AS appears to be clinically relevant in prostate cancer, given the upregulation of CTBP1-AS and downregulation of CTBP1 were detected in primary tumours and metastatic prostate cancer samples, but not in benign prostate tissues. To determine the functional significance of CTBP1-AS-mediated repression of CTBP1 in prostate cancer, the authors examined the role of CTBP1 in androgen-regulated transcription. They showed that CTBP1 acts as a co-repressor of AR by opposing the androgen-mediated demethylation of the repressive histone mark H3K9 and its recruitment to AR-binding sites. More importantly, silencing of CTBP1 resulted in increased proliferation of AR-positive cell lines, indicating that this factor is important in prostate cancer progression. Conversely, the silencing of CTBP1-AS suppressed androgen-dependent cell proliferation in vitro and brought about a remarkable reduction in tumour growth in a xenograft mouse model.

Figure 1 Proposed model of CTBP1-AS regulation of androgen-dependent gene expression. Ligand-bound androgen receptor (AR) induces the expression of CTBP1-AS, which binds and recruits PSF and HDAC/Sin3A complex to the promoter of CTBP1, resulting in histone deacetylation and inhibition of CTBP1 expression. The decrease in CTBP1 level brings about H3K9 demethylation at AR binding sites and the de-repression of androgen-induced genes. CTBP1-AS also cooperates with PSF and HDAC/Sin3A complex to mediate the global repression of androgen-regulated genes, such as p53 and SMAD3.
While the effects of CTBP1-AS knockdown might have been in part due to a relief of CTBP1-AS-mediated repression on CTBP1, Takayama et al (2013) provided evidence which suggests that CTBP1-AS may also function as a trans-acting regulator of androgen-regulated genes by recruiting the histone deacetylase (HDAC)/Sin3A repressor complex via the RNA-binding PTB-associated splicing factor (PSF). Finally, to assess the extent to which CTBP1-AS and PSF function to repress androgen-dependent transcription in prostate cancer cells, the authors carried out simultaneous knockdown of these two factors and found that over 35% of androgen-repressed genes were de-repressed. Taken together, these findings implicate CTBP1-AS/PSF complex-mediated histone deacetylation as a significant mechanism in androgen-dependent transcriptional repression (Figure 1). However, whether the regulation of androgen-dependent transcription by the CTBP1-AS/PSF complex is direct or indirect is unclear. Future experiments using chromatin isolation by RNA purification (ChIRP) followed by deep sequencing will allow one to map the genome-wide occupancy of CTBP1-AS and identify genes that are direct targets of CTBP1-AS/PSF transcriptional regulation.

Several ncRNAs including PCGEM1, PCA3, PRNCR1 and PCAT1 have been previously reported in prostate cancer (Prensner et al, 2004; Chung et al, 2011; Prensner et al, 2011; Ferreira et al, 2012). However, we know little about the functional and mechanistic roles of these ncRNAs. To our knowledge, this is the first study that has provided a precise mode of action of an ncRNA in prostate cancer. In addition, while most antisense transcripts have been proposed to act in cis and regulate the expression of neighbouring genes, CTBP1-AS appears to be an atypical antisense ncRNA in that it can serve as both cis- and trans-regulators of gene expression. Most importantly, the work by Takayama et al (2013) highlights the significance of a previously overlooked portion of the transcriptome in prostate cancer biology and offers new potential therapeutic targets for managing the disease.

Conflict of interest

The authors declare that they have no conflict of interest.

References