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Efficient supply of new histones during DNA replication is

critical to restore chromatin organization and maintain

genome function. The histone chaperone anti-silencing

function 1 (Asf1) serves a key function in providing

H3.1-H4 to CAF-1 for replication-coupled nucleosome

assembly. We identify Codanin-1 as a novel interaction

partner of Asf1 regulating S-phase histone supply.

Mutations in Codanin-1 can cause congenital dyserythro-

poietic anaemia type I (CDAI), characterized by chromatin

abnormalities in bone marrow erythroblasts. Codanin-1 is

part of a cytosolic Asf1–H3.1-H4–Importin-4 complex and

binds directly to Asf1 via a conserved B-domain, implying

a mutually exclusive interaction with the chaperones

CAF-1 and HIRA. Codanin-1 depletion accelerates the

rate of DNA replication and increases the level of chroma-

tin-bound Asf1, suggesting that Codanin-1 guards a limit-

ing step in chromatin replication. Consistently, ectopic

Codanin-1 expression arrests S-phase progression by

sequestering Asf1 in the cytoplasm, blocking histone

delivery. We propose that Codanin-1 acts as a negative

regulator of Asf1 function in chromatin assembly. This

function is compromised by two CDAI mutations that

impair complex formation with Asf1, providing insight

into the molecular basis for CDAI disease.
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Introduction

During DNA replication, parental histones segregate onto

leading and lagging strands in a random fashion (Groth

et al, 2007b). In parallel, new histones are deposited to

maintain nucleosomal density. Nucleosome assembly is the

first step towards restoration of chromatin on new DNA.

Given the role of histones and higher order chromatin

structures in epigenetic gene regulation and genome stability,

histone supply pathways must be fine-tuned to meet the

demands at replication forks (De Koning et al, 2007;

Jasencakova and Groth, 2010; Annunziato, 2011). The histone

H3-H4 chaperone anti-silencing function 1 (Asf1) is a key

player in chromatin replication, donating new histones to

CAF-1 (Tyler et al, 1999; Mello et al, 2002) and handling

histones together with the MCM2-7 replicative helicase

potentially for recycling (Groth et al, 2007a; Jasencakova

et al, 2010). The two mammalian homologues, Asf1a and

Asf1b, have largely redundant functions in S-phase histone

dynamics, with Asf1b being more specialized to proliferating

cells (Corpet et al, 2011). The current view is that Asf1 binds

histones H3-H4 in the cytoplasm and in complex with

Importin-4 accompanies histone dimers into the nucleus

where they are transferred to downstream chromatin assem-

bly factors (De Koning et al, 2007; Campos et al, 2010;

Jasencakova et al, 2010; Alvarez et al, 2011). Asf1 binds

canonical S-phase histones H3.1-H4 as well as replacement

histones H3.3-H4, which are delivered to CAF-1 and HIRA,

respectively (Tagami et al, 2004). It is not entirely clear how

the specificity of Asf1 in these distinct assembly pathways is

regulated, but CAF-1 p60 and HIRA bind in a mutually

exclusive manner to the same binding pocket in Asf1 (Tang

et al, 2006; Malay et al, 2008).

Purification of soluble histone H3 complexes recently

revealed that the HSC70, HSP90 and NASP chaperones act

early in the histone supply pathway upstream of Asf1 and

Importin-4 (Campos et al, 2010; Alvarez et al, 2011). Whereas

HSC70 and HSP90 probably are important for folding, NASP

is required to maintain a soluble pool of histones available for

deposition (Campos et al, 2010; Cook et al, 2011). However,

it remains unclear how histones H3-H4 are transferred to

Asf1 and whether additional factors regulate Asf1 histone

shuttling. As an entry point to understand Asf1 function,

we have characterized human Asf1 complexes and recently

reported a comprehensive profiling of modifications on Asf1-

bound histones (Groth et al, 2007a; Jasencakova et al, 2010).

In addition to cytosolic binding partners with predicted roles

in histone metabolism (such as sNASP, RbAp46-HAT1, and

Importin-4), a protein of unknown function, Codanin-1,

caught our attention due to its abundance and link to disease.

Mutations in CDAN1, the gene encoding Codanin-1, cause

congenital dyserythropoietic anaemia type I (CDAI), a rare

recessive anaemic disorder (Dgany et al, 2002; Iolascon et al,

2011). Codanin-1 is a 134-kDa ubiquitously expressed protein

conserved in flies, frogs and fish, but with no apparent

homologue in worms and yeast (Dgany et al, 2002). The

Drosophila homologue, Discs lost (Dlt), is required for cell

survival and cell-cycle progression (Pielage et al, 2003) and

mice homozygous for a gene-trap in the CDAN1 locus die

during early embryogenesis (Renella et al, 2011). This argues

that Codanin-1 is an essential protein and consistently the

majority of CDAI cases show missense mutations leading to
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single amino-acid substitutions in Codanin-1 (Dgany et al,

2002; Tamary et al, 2005; Heimpel et al, 2006; Ru et al, 2008).

A principal cytological feature of bone marrow erythroblasts

from CDAI patients is abnormal chromatin structure,

known as ‘spongy heterochromatin’ having a Swiss cheese-

like appearance (Wickramasinghe and Wood, 2005).

Furthermore, cell-cycle analyses of patient samples show

accumulation of erythroblasts in S phase (Wickramasinghe

and Pippard, 1986; Tamary et al, 1996) suggesting replication

defects. Given that Asf1 function is essential for DNA replica-

tion and chromatin assembly in human cells (Groth et al,

2005, 2007a), an appealing idea was that CDAI disease could

be linked to defects in histone metabolism. Here, we char-

acterize a molecular link between Codanin-1 and Asf1 func-

tion in histone supply and address the impact of CDAI

mutations on this interplay.

Results

Codanin-1 is part of a cytosolic Asf1–H3-H4–Importin-4

complex

We identified Codanin-1 by mass spectrometry of e-Asf1a and

e-Asf1b complexes isolated from asynchronous HeLa S3 cells

(Figure 1A; Supplementary Figure S1A). This finding is con-

sistent with a high-throughput proteomic screen identifying

Codanin-1 as an Asf1b-associated protein (Ewing et al, 2007)

and we further confirmed the interaction by reciprocal immu-

noprecipitation of endogenous Asf1 and Codanin-1 (Figure 1B

and D). We previously found that Importin-4 is specific to

cytosolic Asf1 complexes, while MCM4, 6, 7 are part of a

nuclear Asf1 complex (Groth et al, 2007a; Jasencakova et al,

2010). Western blot analysis showed that Codanin-1 is a

cytosolic protein, mainly found in cytosolic Asf1 complexes

similarly to Importin-4 (Supplementary Figure S1A and B).

Cytosolic Asf1 separates into two major forms on a sizing

column; a histone-bound complex and a histone-free form

eluting at lower molecular weight (Groth et al, 2005). To

address whether Codanin-1 could be part of an Asf1 complex

containing histones, we analysed purified cytosolic e-Asf1b

complexes by gel filtration. Codanin-1 co-eluted with histone-

bound Asf1, showing an elution profile highly similar to

Importin-4 (Figure 1C). We confirmed that Codanin-1

co-purified with soluble non-nucleosomal histone H3.1

(Figure 1E), using a cell line expressing low levels of

epitope-tagged histone H3.1 (Tagami et al, 2004). Moreover,

Importin-4 co-immunoprecipitated with Codanin-1 (Figure 1D)

supporting that these factors are present together in a complex

with Asf1 and histone H3-H4. However, the chaperone sNASP

and RbAp46 thought to act upstream of Asf1 and the down-

stream chaperones HIRA and CAF-1 did not co-purify with

Codanin-1 (Supplementary Figure S1C and D). These biochem-

ical data identify Codanin-1 as a new member of a cytosolic

Asf1–H3.1-H4–Importin-4 complex. We asked whether the

interaction between Codanin-1 and Asf1 is histone dependent,

taking advantage of Asf1 carrying a mutation in the histone-

binding site, V94R (Mousson et al, 2005; Groth et al, 2007a).

While the interaction with Importin-4 is lost in the Asf1a V94R

mutant (Figure 1F; Jasencakova et al, 2010), Codanin-1 bound

wild-type Asf1 and the V94R mutant equally well (Figure 1F).

Thus, demonstrating that the interaction between Codanin-1

and Asf1 is histone independent.

Codanin-1 binds Asf1 via a B-domain similar to HIRA

and CAF-1 p60

To dissect the nature of the Codanin-1–Asf1 interaction, we

performed a series of pull-down experiments using recombi-

nant GST–Asf1 and in-vitro translated 35S-labelled Codanin-1.

Indeed, full-length Codanin-1 bound to both recombinant

Asf1a and Asf1b (Figure 2A). Detailed mapping revealed that

the N-terminal part of Codanin-1 interacts with the globular

domain of Asf1a (Figure 2A; Supplementary Figure S2A).

Additionally, Codanin-1 bound recombinant wild-type

and the Asf1aV94R mutant equally well (Supplementary

Figure S2A). Together, these data identify Codanin-1 as a direct

Asf1 binding partner.

Of the many Asf1-associated proteins only a few are direct

binding partners, including downstream histone chaperones

HIRA and CAF-1 p60 that play key roles in chromatin

assembly (Mello et al, 2002; Daganzo et al, 2003). These

downstream histone chaperones interact with Asf1 in a

mutually exclusive manner via a so-called B-domain motif

(Kirov et al, 1998; Daganzo et al, 2003; Tang et al, 2006).

Interestingly, closer examination of the N-terminal part of

Codanin-1 revealed a putative B-domain with a high similar-

ity to the domains present in CAF-1 and HIRA (Figure 2B,

left). Importantly, the B-domain residues RRI, involved in

direct contacts with Asf1 side chains (Tang et al, 2006), are

also present in Codanin-1. Additionally, we noticed that the

B-domain in Codanin-1 is evolutionary conserved (Figure 2B,

right). Disruption of the B-domain in Codanin-1 reduced

binding to Asf1 (a and b) in vitro (Figure 2C). Conversely,

mutation of the Asf1b residues (D36A and D37A) critical for

binding the B-domain in HIRA and CAF-1 p60 (Daganzo et al,

2003; Tang et al, 2006) also abolished Codanin-1 interaction

(Figure 2C). Taken together, these results demonstrate that

Asf1 binds Codanin-1 in a manner that compares with its

interaction with HIRA and CAF-1, implying that these inter-

actions are mutually exclusive.

Codanin-1 is a negative regulator of chromatin

replication

Given the interaction with Asf1, it was important to analyse

the effect of Codanin-1 downregulation on chromatin replica-

tion. We targeted Codanin-1 by an siRNA smart pool as well

as an independent siRNA and both strategies efficiently

downregulated Codanin-1 mRNA and protein levels

(Figure 3A; Supplementary Figure S3A). Whereas depletion

of Asf1 (a and b) leads to accumulation of cells in S phase due

to inhibition of DNA replication (Groth et al, 2005, 2007a),

cell cycle progression was not dramatically altered upon

Codanin-1 knockdown (Supplementary Figure S3B).

However, we consistently found higher cell counts in cultures

depleted for Codanin-1 as compared with controls, suggesting

a moderate proliferation advantage (Supplementary Figure

S3C). To directly probe DNA synthesis, we labelled newly

synthesized DNA with a short pulse of EdU (5-ethynyl-2-

deoxyuridine), which can be visualized with Click-iT tech-

nology. Surprisingly, cells treated with Codanin-1 siRNAs for

56 h displayed stronger EdU signals than controls (Figure 3B)

and quantitative analysis at several time points confirmed

this observation (Figure 3C; Supplementary Figure S4A). The

increase in EdU incorporation was not associated with DNA

damage as indicated by the lack of gH2AX (Supplementary

Figure S4B). This argues that the rate of DNA replication is
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increased in the absence of Codanin-1. Consistent with this

observation, we noted that Codanin-1-depleted cells also had

more PCNA (proliferating cell nuclear antigen) loaded onto

chromatin as compared with control cells (Figure 3B and D;

Supplementary Figure S4C). PCNA acts as a processivity clamp

for DNA polymerases and marks sites of ongoing replication

(reviewed in Moldovan et al, 2007). The higher levels of PCNA

on replicating chromatin thus probably reflect that more repli-

cation forks are active in Codanin-1-depleted cells.

It was remarkable that knockdown of Codanin-1 and Asf1,

two factors forming a common complex, had entirely oppo-

site effects on DNA synthesis (Supplementary Figure S4A;

Groth et al, 2005, 2007a). Although Codanin-1 depletion did

not affect Asf1 protein levels (Figure 3A), we speculated that

it might influence Asf1 localization to chromatin. To test this

idea, we pre-extracted cells with Triton to remove soluble

proteins and probed the levels of chromatin-bound Asf1 by

immunostaining. Codanin-1-depleted cells showed a striking

increase of chromatin-bound Asf1 and quantitative analysis

of signal intensities substantiated this observation (Figure 3E

and F; Supplementary Figure S4D). Together, our RNAi-based

analysis suggests that Codanin-1 could act as a negative

regulator of Asf1 function in histone supply, governing its

association with chromatin.

Ectopic expression of Codanin-1 inhibits DNA

replication by sequestering Asf1 in the cytoplasm

If Codanin-1 was a negative regulator of Asf1 function, then

the prediction would be that ectopic Codanin-1 expression

should inhibit S-phase progression similarly to Asf1 depletion
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(Groth et al, 2005, 2007a; Supplementary Figures S3B and

S4A). Indeed, Codanin-1 overexpression strongly impaired

S-phase progression, as illustrated by the accumulation of

cells in mid-S phase already 30h post transfection

(Figure 4A). Co-expression of Asf1a could rescue this arrest

(Figure 4A), providing additional support to the functional

link between these factors.

Codanin-1 is mainly a cytoplasmic protein in primary

erythroblasts and HeLa cells (Renella et al, 2011;

Supplementary Figure S1A), and consistently ectopic
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Codanin-1 localized primarily to the cytoplasm in U-2-OS

cells (Figure 4B). Both Asf1a and Asf1b are mainly nuclear

proteins (Jasencakova et al, 2010; Figure 4B), but given their

role in histone import they are likely to shuttle between the

cytoplasm and the nucleus. Remarkably, Asf1a shifted

towards cytoplasmic localization in Codanin-1 expressing

cells, becoming almost excluded from the nucleus

(Figure 4B). The sequestration of Asf1 away from the sites

of DNA replication could therefore explain the S-phase arrest

in cells with ectopic Codanin-1 expression. Indeed,

co-expression of Asf1a restored nuclear Asf1 levels

(Figure 4B), consistent with the ability to rescue S-phase

progression (Figure 4A). To further demonstrate that Asf1

binding is required for Codanin-1 to block S-phase progres-

sion, we generated cell lines conditional for expression of wild-

type Codanin-1 and a B-domain mutant (Figure 4C). By im-

munoprecipitation of tagged proteins, we observed that Asf1 (a

and b) binding was lost in the B-domain mutant (Figure 4D),

consistent with our in vitro data (Figure 2C). Importantly,

mutation of the B-domain clearly compromised the ability of

Codanin-1 to induce S-phase arrest (Figure 4E). We thus con-

clude that Codanin-1 exerts a dominant-negative effect on S-

phase progression chiefly by interfering with Asf1 function.

CDAI missense mutations disable the functional

interaction with Asf1

Finally, we addressed whether the liaison between Codanin-1

and Asf1 is compromised by mutations found in CDAI
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Figure 3 Codanin-1 depletion enhances DNA replication and Asf1 binding to chromatin. (A) U-2-OS cells were treated with an independent
siRNA (siCdan1 #1) or an siRNA smart pool (siCdan1 #2) targeting Codanin-1 for 56 or 70 h. Knockdown efficiency was assessed by western
blot analysis and qPCR (Supplementary Figure S3A). (B) Immunofluorescence analysis of U-2-OS cells treated with siRNA for 56 h followed by
EdU pulse labelling. PCNA staining served as a marker for S-phase cells. Scale bar, 20mm. (C) Quantification of EdU incorporation. (Left) Dot
plot illustrating the distribution of EdU intensities within one experiment. Cells were treated as in (B) and EdU intensities were measured in
PCNA-positive cells. n487 and ***Po0.0001 calculated by Wilcoxon paired test. (Right) Bar diagram showing the average of three
independent experiments with error bars indicating standard deviation. The values of siControl were set to 100%. In each experiment, we
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representative of three independent experiments and similar results were observed with an independent siRNA (Supplementary Figure S4D).
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patients. We generated Flp-In cells conditionally expressing

ectopic FLAG–HA–Codanin-1 carrying two common CDAI

missense mutations, R714W and R1042W (Figure 5A; Dgany

et al, 2002; Tamary et al, 2005; Heimpel et al, 2006; Ru et al,

2008). Western blotting and immunofluorescence analyses

confirmed that wild-type and CDAI mutants were expressed

at similar levels upon induction with tetracycline (Figure 5A).

Like the majority of CDAI mutations, R714W and R1042W,

fall in the C-terminal region, while the B-domain involved in

the direct interaction with Asf1 is found in the N-terminal

part of the protein. Consistently, the R714W and R1042W

mutations did not affect Asf1 binding in vitro (Supplementary

Figure S5A). However, immunoprecipitation of these

CDAI disease mutants from cell extracts revealed that their

ability to form complex with Asf1 (a and b) in vivo is

significantly impaired as compared with wild-type

Codanin-1 (Figure 5B). The cellular distribution of the

mutants was similar to wild-type Codanin-1 (Figure 5A,

right), consistent with the finding that erythroblasts from

CDAI patients show normal Codanin-1 localization (Renella

et al, 2011). In cells expressing ectopic wild-type Codanin-1,

Asf1 relocalized to the cytoplasm and only 13% of the cells

maintained nuclear Asf1 staining (Figure 5C). This response

was similar in cells expressing the R1042W mutant, although

the nuclear exclusion of Asf1 generally appeared less pro-

nounced. However, the R714W mutation significantly com-

promised the ability of Codanin-1 to sequester Asf1 in the

cytoplasm (Figure 5C). Importantly, this mutant had also lost

the ability to arrest cells in S phase and inhibit DNA synthesis

(Figure 5D and E), while the R1042W mutant showed a more

modest defect.

These data argue that CDAI mutations compromise

the ability of Codanin-1 to negatively regulate Asf1.

The accumulation of Asf1 on chromatin is a palpable pheno-

type of cells lacking Codanin-1 (Figure 3F; Supplementary

Figure S4D). To directly test the ability of the R714W CDAI
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Figure 4 Ectopic Codanin-1 expression arrests S-phase progression by sequestering Asf1 in the cytoplasm. (A) Cell-cycle profiles of cells
transfected with Myc–FLAG–Codanin-1 and/or e-Asf1a analysed 30h post transfection. Cells were co-transfected with a GFP-Spectrin
expression vector to gate for transfected cells. (B) Immunofluorescence analysis of cells treated as in (A). Cells were harvested 24h after
transfection and stained with antibodies against the Myc epitope and Asf1a. Scale bar, 20 mm. (C) Western blotting (right) and immuno-
fluorescence analysis (left) of cells expressing ectopic wild-type FLAG–HA–Codanin-1 or a B-domain mutant. Conditional T-REx Flp-In U-2-OS
cells were left untreated (�Tet) or induced with tetracycline for 24 h (þTet). Scale bar, 20mm. (D) Wild-type FLAG–HA-tagged Codanin-1 and
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(E) Cell-cycle profiles of cells from (C) analysed by FACS.
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mutant to substitute for endogenous Codanin-1 in regulation

of Asf1, we carried out a complementation experiment

using our cell lines inducible for siRNA-resistant Codanin-1

wild-type and R714W mutant (see Materials and methods).

Codanin-1 depletion significantly increased the level of

chromatin-bound Asf1 in non-induced cells (Figure 6A

and B). Expression of wild-type Codanin-1 rescued this

phenotype (Figure 6A; Supplementary Figure S6) and further

reduced the level of Asf1 on chromatin. In contrast,

the CDAI mutant R714W failed to rescue and Asf1 levels

on chromatin remained high (Figure 6B; Supplementary

Figure S6).

Discussion

Here, we characterize Codanin-1 as a novel interactor of

the histone chaperone Asf1 and conclude that it acts as a

negative regulator of Asf1 (Figure 7). The salient pieces of

evidence supporting this view are (i) Codanin-1 is found in a

cytosolic complex together with Asf1, histones H3.1-H4 and

Importin-4; (ii) Asf1 binds via its HIRA/CAF-1 interaction

pocket directly to a highly conserved B-domain motif in

Codanin-1, making this interaction mutually exclusive with

the two downstream chaperones; (iii) RNAi depletion of

Codanin-1 elevates the level of chromatin-bound Asf1 and
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enhances DNA synthesis in S-phase cells; (iv) ectopically

expressed Codanin-1 binds and sequesters Asf1 in the cyto-

plasm, hereby interfering with Asf1 functions at replication

forks including histone provision and inhibiting DNA synth-

esis. We also show that two CDAI disease mutations, R714W

and R1042W, compromise Asf1 interaction in vivo and disable

the ability of Codanin-1 to block S-phase progression when

overexpressed. Moreover, the R714W CDAI mutant cannot

substitute for endogenous Codanin-1 in regulation of Asf1

binding to chromatin. This illustrates that Codanin-1 mutants

found in CDAI patients are defective in Asf1 regulation and

suggests that this defect might underlie at least some of the

phenotypes associated with CDAI.

Codanin-1 is ubiquitously expressed in adult tissues and

essential for early embryonic development (Dgany et al,

2002; Renella et al, 2011), arguing for a basic biological

function. Indeed, no patients with a null genotype have

been identified. We propose that Codanin-1 could guard a

limiting step in chromatin replication. While ectopic

Codanin-1 inhibits DNA replication by sequestering Asf1 in

the cytoplasm, lack of the protein increases both DNA

synthesis and the level of Asf1 on chromatin. Thus, in the

absence of Codanin-1, cells may lack an essential control of

Asf1–histone dynamics. Codanin-1 is found in complex with

Asf1–H3.1-H4 and Importin-4, which facilitates nuclear im-

port of histones and Asf1 (Campos et al, 2010; Jasencakova

et al, 2010; Alvarez et al, 2011). Moreover, Codanin-1 interacts

directly with Asf1 via a B-domain that is conserved in all

organisms possessing a Codanin-1 homologue. Similarly, the

globular domain of Asf1 that contains the B-domain binding

pocket is also conserved through evolution (De Koning et al,

2007). This argues that the interaction with Asf1 and the

mutually exclusive relationship with CAF-1 and HIRA

chaperones are integral to Codanin-1 function. While CAF-1

and HIRA are chromatin assembly factors, Codanin-1 acts

upstream probably at the level of nuclear import. We envi-

sion that Codanin-1 acts in the cytoplasm and regulates

Asf1–H3-H4 delivery to chromatin. Consistently, Codanin-1

is more abundant in soluble Asf1 cytosolic complexes,

in agreement with its mainly cytosolic localization in HeLa

cells (this study) and erythroblasts (Renella et al, 2011).

It remains unclear whether the less abundant nuclear Asf1–

Codanin-1 complex has a link to a reported heterochromatin

localization of Codanin-1 (Noy-Lotan et al, 2009). Given that

Codanin-1 binds to Asf1 with high affinity, translocation of

Codanin-1 together with Asf1–H3-H4 into the nucleus will

most likely block histone transfer to downstream chaperones.

Thus, Codanin-1 could have a dual inhibitory function:
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the chaperone in the cytoplasm away from replicating DNA.
Moreover, Codanin-1 binding to Asf1 is mutually exclusive with
CAF-1 and HIRA, making it a potential inhibitor of Asf1 histone
donor function. In absence of Codanin-1, more Asf1 is present on
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synthesis, suggesting that Codanin-1 guards a limiting step in
chromatin replication. We propose that Codanin-1 could regulate
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(i) sequestration of Asf1 in the cytoplasm and (ii) via its

B-domain hindering the binding of Asf1 to CAF-1 and HIRA.

Congenital dyserythropoietic anaemias (CDAs) are a

heterogeneous group of rare disorders resulting from various

abnormalities in erythropoiesis (Iolascon et al, 2011). The two

most common forms, CDAI and CDAII, have been defined by

morphological features of bone marrow erythroblasts and are

caused by mutations in Codanin-1 and Sec23B, respectively.

In addition, CDAII patients have distinct glycosylation ab-

normalities, not manifested in CDAI (Iolascon et al, 2011,

Schwarz et al, 2009). Several features are specific to CDAI

erythroblasts, including abnormal heterochromatin organiza-

tion, internuclear chromatin bridges and S-phase defects

(Wickramasinghe and Pippard, 1986; Tamary et al, 1996).

CDAI erythroblasts show aberrant accumulation of the het-

erochromatin HP1a in the Golgi, which led to the idea that

Codanin-1 would be involved in protein processing and/or

trafficking (Renella et al, 2011). However, it remains unclear

why erythropoiesis is particularly sensitive to Codanin-1

mutations, since Codanin-1 is a ubiquitously expressed pro-

tein. The cellular features of CDAI erythroblasts such as

spongy heterochromatin organization and internuclear chro-

matin bridges were not recapitulated in our systems for RNAi

depletion or overexpression of Codanin-1, preventing dissec-

tion of these phenotypes. We speculate that high proliferation

rates in early erythroid progenitors, along with gradual con-

densation of the nucleus in later differentiation stages, sensi-

tizes these cells to chromatin assembly defects that in turn

can jeopardize chromatin organization and chromosome

segregation during mitosis (Kaufman et al, 1997; Taddei

et al, 2001; Myung et al, 2003). Asf1 was first identified as

an S-phase factor that upon overexpression interferes with

heterochromatin silencing in yeast (Le et al, 1997), and it is

thus possible to envision that CDAI mutations by disabling

Asf1 regulation may unleash an antisilencing activity.

The vast majority of mutations identified in CDAI patients,

including R714W and R1042W examined here, fall in clusters

within the C-terminal region away from the B-domain

involved in Asf1 binding. However, the R714W and R1042W

mutations partially disrupt Asf1 binding in vivo and the

R714W mutant fails to functionally complement for endogen-

ous Codanin-1 in regulation of Asf1 chromatin binding. We

therefore speculate that these mutations may abrogate an

interphase that indirectly aids efficient complex formation

with Asf1. Structural analysis will be required to reveal

whether CDAI mutations cluster on a potential interaction

surface and how they are situated three dimensionally with

respect to Asf1 binding. In addition, profiling of Codanin-1

complexes may identify partners that contribute to Asf1

regulation or participate in other, yet unknown, functions

that also could be targeted by CDAI mutations.

Interestingly, DNA synthesis is deregulated in Codanin-1-

depleted cells, illustrating that replication control is coordi-

nated with histone provision. We also show that ectopic

Codanin-1 sequesters Asf1 in the cytoplasm, thereby blocking

Asf1-dependent histone transfer to the nucleus and inhibiting

DNA replication. We thus anticipate that the interaction

between Asf1 and endogenous Codanin-1 must be regulated,

perhaps via post-translational modifications, in order to

allow Asf1 to shuttle into the nucleus and deliver its cargo

to CAF-1 or HIRA for chromatin assembly. Interestingly, high-

throughput studies have identified an interaction between

Codanin-1 and PDPK1, a cytoplasmic kinase acting upstream

of AKT, as well as several putative Cdk phosphorylation sites

in the vicinity of the B-domain (Stelzl et al, 2005; Choudhary

et al, 2009; Huttlin et al, 2010). It is thus appealing to imagine

that the binding of Asf1 to Codanin-1 provides a means to

fine-tune histone supply in response to external stimuli and

cell-cycle cues.

Materials and methods

Cell culture and siRNA treatment
HeLa S3 cells stably expressing OneStrep-tagged (e�) Asf1 (a and b)
were described (Groth et al, 2007a). U-2-OS cells conditional for
Codanin-1 were generated in the T-REx Flp-In system (Invitrogen)
and expression was induced with tetracycline (80–100ng/ml).
Of note, Codanin-1 was expressed from a synthetic human
codon-optimized cDNA (synthesized by GeneArt) resistant to
siRNAs (siCdan1#2). The CDAN1-targeting siRNAs were siCdan1
#1 (Sigma): 50-CGUAGAGUUCGUGGCAGAAAGAAUU-30 (sense strand),
siCdan1 #2: ON-TARGET plus SMART pool (Dharmacon). Cell-cycle
profiles were determined by FACS analysis of DNA content and
analysed by FlowJo 8.8.4 software (Tree Star).

Biochemistry and immunocytochemistry
Purification of e-Asf1 complexes using stringent washing conditions
(500mM NaCl, 20mM Tris pH 7.8, 0.2mM EDTA, 0.2% NP-40,
1mM DTT, 5% glycerol, and protease and phosphatase inhibitors)
and gel filtration analysis were described previously (Jasencakova
et al, 2010). Co-immunoprecipitation of cytosolic proteins was
carried out in a buffer containing 200mM NaCl, 0.2% NP-40,
20mM Tris pH 7.6, 0.2mM EDTA pH 8, 5% glycerol and inhibitors
(see Supplementary data). For GST pull-down experiments,
35S-labelled Codanin-1 was produced using the TnT T7 Quick
Coupled Transcription/Translation System (Promega) and incu-
bated with recombinant GST–Asf1 proteins in binding buffer
(150mM NaCl, 0.2% NP-40, 50mM Tris, pH 7.6, 2mM EDTA, 5%
glycerol and inhibitors) for 2 h at 41C. The reactions were washed
five times and analysed by digital autoradiography.

Mass spectrometry
Excised protein bands were analysed by Liquid chromatography-
MS/MS on a Qstar elite machine at the LSMP Platform, Curie
Institute, as described (Groth et al, 2007a).

Immunocytochemistry
Cells were either pre-extracted with 0.5% Triton in CSK buffer
(10mM PIPES pH 7, 100mM NaCl, 300mM Sucrose, 3mM MgCl2)
5min at 41C to remove soluble proteins or fixed directly with 4%
formaldehyde and processed as described (Jasencakova et al, 2010).
Images were collected using Axiovert 200M confocal microscope
equipped with LSM510 Laser module (Zeiss), or a DeltaVision
system and analysed with SoftWoRx 5.0.0 software (Applied
Precision). All images in the individual panels were acquired with
the same settings and adjusted for brightness and contrast
identically. Quantification was carried out using the polygon tool
in SoftWoRX to measure fluorescence intensity in individual
channels of nuclei defined by DAPI staining. Statistics and dot plot
presentation of data were made in Prism 4.0 (GraphPad Software).
See Supplementary data for the complete list of antibodies used in
this study.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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