Supplementary Information

Supplementary Material and Methods

Plasmid construction The transposable element vectors for inducible expression of RFP-FUSwt and EGFP-FUSR521C and EGFP-FUSP525L were derived from the enhanced piggyBac (ePiggyBac) vector epB-Bsd-TRE described in Rosa and Brivanlou, 2011. Briefly, a cassette encoding for the rtTA-Advanced protein (Clontech) was fused to the Puromycin or Blasticidin resistance coding sequences through a T2A self-cleavage peptide element, and put under the control of the ubiquitous pUbc promoter in the epB-Bsd-TRE vector. The resulting plasmids (epB-Puro-TT and epB-Bsd-TT) hold on the opposite direction the tetracycline-responsive promoter element (TRE), followed by a short multicloning site. Therefore both elements of the TET-ON system are present in the same vector. The RFP and EGFP coding sequences, devoid of the stop codon, were then inserted in the epB-Puro-TT and epB-Bsd-TT plasmids, respectively, generating the epB-Puro-TT-RFP and epB-Bsd-TT-EGFP. Finally, the coding sequences of FUS, wild type or mutated, were cloned in frame with the fluorescent proteins, generating the epB-Puro-TT-RFP-FUSwt, epB-Bsd-TT-EGFP-FUSR521C and epB-Bsd-TT-EGFP- FUSP525L.

Drosha \textit{in vitro} processing. \textit{In vitro} processing assay was carried out as previously described (Lee and Kim, 2007). Pri-miRNA substrates were prepared by \textit{in vitro} transcription, using T7 RNA polymerase (Promega), from PCR amplified templates (oligonucleotides are listed in Table II), in the presence of [\textalpha-32P]UTP (Perkin-Elmer). 100'000 cpm of each pri-miRNA transcript were incubated with 15 mg of SK-N-BE nuclear extract cells at 37°C for 90 minutes.

Supplementary references

Supplementary Figure Legends

\textbf{Figure S1.} (A) miRNA and protein levels during SK-N-BE cells differentiation. SK-N-BE cells were induced to differentiate with retinoic acid (RA) and incubated for the indicated times (0, 1, 3, 6 and 10 days). miR-9, miR-125b and miR-132 were analyzed by Northern blot using corresponding specific oligonucleotides. 5.8S rRNA was used as internal control. The histogram indicates the relative levels normalized for the 5.8S signal. Lower panel: Western blot analysis of N-Myc and FUS proteins at the same time points. (B) miRNA profiling in SK-N-BE and HeLa cells treated with anti-FUS siRNA (siFUS) or with AllStars Negative Control siRNA (siScr). SK-N-BE cells were cultured in RA for 6 days. Pie charts and tables showing the percentage of miRNA deregulated more than 0.2 fold.

\textbf{Figure S2.} FUS interference. (A) Levels of neuronal-specific miRNAs in RA-treated SK-N-BE cells in two different sets of RNAi experiments where the residual FUS levels were 45% and 20% respectively. AllStars Negative Control siRNA (siScr) were utilized as control. Left panels: Western blot analysis of FUS and GAPDH proteins. Relative quantification (RQ) of FUS versus GAPDH is shown with respect to the siScr condition set to a value of 1. Right panels: histograms of miRNA levels analysed by qPCR normalized for the snoRNA-U25 internal control. The values are
the average from 3 independent experiments and are expressed with respect to the siScr condition set to a value of 1. (B) SK-N-BE cells were treated with siRNAs against the 3’UTR of FUS (siFUS-3’) or scrambled siRNA (siScr) and maintained in retinoic acid (RA) for 6 days. miRNA levels were analyzed by RT-qPCR. The histogram represents the average of 3 different measurements. miRNA levels were normalized for the snoRNA-U25 internal control.

Figure S3. Coomassie staining showing the quality of purified recombinant GST-FUS\(^{WT}\) and GST-FUS\(^{R521C}\). Different amounts of BSA protein are used as quantity control. Marker of molecular weight is also shown.

Figure S4. Intracellular localization of wild type and mutated FUS proteins. (A) Schematic representation of the epB-Puro-TT-RFP-FUS\(^{wt}\), epB-Bsd-TT-EGFP-FUS\(^{R521C}\) and epB-Bsd-TT-EGFP-FUS\(^{P525L}\) constructs. Triangles indicate the 5’ and 3’ Terminal Repeats (TR) of the epiggyBac vector. (B) SK-N-BE cells were co-transfected with epB-Puro-TT-RFP-FUS\(^{wt}\) and epB-Bsd-TT-EGFP-FUS\(^{R521C}\) (top panels) or with epB-Puro-TT-RFP-FUS\(^{wt}\) and epB-Bsd-TT-EGFP-FUS\(^{P525L}\) (bottom panels), together with a plasmid encoding for the epiggyBac transposase. After selection with 1µg/ml Puromycin and 10 µg/ml Blasticidin, stably transfected cells were induced with 0,2µg/ml Doxycyclin for 3 days. Images were taken with a Zeiss Axio Observer A1 fluorescence microscope at 20X magnification. Scale bar=20 µm.

Figure S5. FUS depletion does not affect Drosha-mediated processing in vitro. In vitro processing with \(^{32}\)P-UTP labelled pri-miR-9-2, pri-miR-125-b and pri-miR-132 using nuclear extracts from SK-N-BE cells treated either with AllStars Negative Control siRNA (siScr) or siRNA against FUS (siFUS). The mock samples with no extract are used as controls.
Figure S1

A

![Graph showing expression levels of miR-9, miR-125b, and miR-132 over 10 days of RA treatment.]

B

- **SK-N-BE**
 - Downregulated: 149 (79.26%)
 - Unaffected: 22 (11.70%)
 - Upregulated: 17 (9.04%)
 - Total: 188 (100.00%)

- **HeLa**
 - Downregulated: 53 (30.46%)
 - Unaffected: 59 (33.91%)
 - Upregulated: 62 (35.63%)
 - Total: 174 (100.00%)
Figure S2

A

<table>
<thead>
<tr>
<th>siScr</th>
<th>siFUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUS</td>
<td>[Image]</td>
</tr>
<tr>
<td>GAPDH</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

RQ:

| | siScr | siFUS |
| | 1 | 0.45 |

| | siScr | siFUS |
| | 1 | 0.20 |

Graphs:

- siScr vs. siFUS for miR-9, miR-125b, and miR-132
- miR-9, miR-125b, miR-132 levels

B

Graphs:

- miR-9, miR-125b, miR-128, miR-132, miR-212, miR-134, miR-143, miR-192, miR-199a, miR-628-5p, miR-15a, miR-432
- siScr vs. siFUS-3'
Figure S3

GST-FUS WT

GST-FUS R521C

- 0,2 µg of BSA
- 0,5 µg of BSA

4-12% gel

- KD 115
- KD 80
- KD 65
- KD 50
- KD 40

Coomassie
Figure S4

A

epB-Puro-TT-RFP-FUSwt

epB-Bsd-TT-EGFP- FUSR521C/P525L

B

\textbf{EGFP-FUS}R521C \hspace{1cm} \textbf{RFP-FUS}WT \hspace{1cm} \textbf{merge}

\textbf{EGFP-FUS}P525L \hspace{1cm} \textbf{RFP-FUS}WT \hspace{1cm} \textbf{merge}
Figure S5

pri-miR-9-2 pri-miR-125b-2 pri-miR-132

mock siScr siFUS mock siScr siFUS mock siScr siFUS

pre-miRNA