The PTB domain of ShcA couples receptor activation to the cytoskeletal regulator IQGAP1

Matthew J Smith1, W Rod Hardy2, Guang-Yao Li1, Marilyn Goudreault2, Steven Hersch1, Pavel Metalnikov2, Andrei Starostine2, Tony Dawson2,3,* and Mitsuhiko Ikura1,4,*

1Division of Signaling Biology, Ontario Cancer Institute, MaRS TMDT, Toronto, Ontario, Canada, 2Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada, 3Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada and 4Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.

Adaptor proteins respond to stimuli and recruit downstream complexes using interactions conferred by associated protein domains and linear motifs. The ShcA adaptor contains two phosphorytousine recognition modules responsible for binding activated receptors, resulting in the subsequent recruitment of Grb2 and activation of Ras/MAPK. However, there is evidence that Grb2-independent signalling from ShcA has an important role in development. Using mass spectrometry, we identified the multimodular scaffold IQGAP1 as a ShcA-interacting protein. IQGAP1 and ShcA co-purify and are co-recruited to membrane ruffles induced by activated receptors of the ErbB family, and a reduction in ShcA protein levels inhibits the formation of lamellipodia. We used NMR to characterize a direct, non-canonical ShcA PTB domain interaction with a helical fragment from the IQGAP1 N-terminal region that is pTyr-independent. This interaction is mutually exclusive with binding to a more conventional PTB domain peptide ligand from PTP–PEST. ShcA-mediated recruitment of IQGAP1 may have an important role in cytoskeletal reorganization downstream of activated receptors at the cell surface.

The EMBO Journal (2010) 29, 884–896. doi:10.1038/ emboj.2009.399. Published online 14 January 2010

Keywords: ErbB2; IQGAP1; lamellipodia; PTB domain; ShcA

Introduction

The Shc proteins are a family of adaptors containing N-terminal PTB and C-terminal SH2 domains (Ravichandran,

*Corresponding author: M Ikura, Department of Medical Biophysics and Division of Signaling Biology, University of Toronto and Ontario Cancer Institute, MaRS TMDT, 101 College Street, Toronto, Ontario, Canada M5G 1L7. Tel.: +1 416 581 7550; Fax: +1 416 581 7564; E-mail: mikura@uhnresearch.ca or T Pawson, Department of Molecular and Medical Genetics, University of Toronto and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario Canada, M5G 1X5. Tel.: +1 416 586 8262; Fax: +1 416 586 8869; E-mail: pawson@msri.on.ca.

Received: 10 July 2009; accepted: 10 December 2009; published online: 14 January 2010

2001), each of which bind phosphorylated tyrosine (pTyr) residues in the context of specific amino acid sequences. ShcA is the most widely expressed of four mammalian Shc proteins, and its primary role is in signalling from activated receptors at the cell surface. These include receptors for growth factors (Ravichandran et al, 1995; Ricketts et al, 1996; Gunja et al, 1998; Meakin et al, 1999; Hennige et al, 2000; Finlayson et al, 2003; Motegi et al, 2004), antigens (Ravichandran et al, 1993; Pratt et al, 1999; Patrussi et al, 2005; Fukushima et al, 2006), and cytokines (Dorsch et al, 1994; Bates et al, 1998; Hunt et al, 1999), as well as integrins (Mainiero et al, 1995; Wary et al, 1999; Cowan et al, 2000; Dans et al, 2001; Weyts et al, 2002) and GPCRs (Luttrell et al, 1997; Schafer et al, 2004; Natarajan and Berk, 2006). Recruitment of ShcA to assorted membrane proteins results in its phosphorylation on three tyrosine residues (Y239/40 and Y313) in a central CH1 domain that subsequently activate the Ras/MAPK pathway through the recruitment of Grb2 and SOS (Salcini et al, 1994; van der Geer et al, 1996).

PTB domain interactions typically mediate ShcA association with surface receptors. Selectivity is achieved through recognition of linear motifs with the consensus sequence ΦXNPyX(F being a hydrophobic residue and X representing any amino acid) (Uhlil et al, 2005). A structure of the ShcA PTB domain complexed with a 12 residue phosphopeptide from the juxtamembrane of TrkA was solved by NMR spectroscopy (Zhou et al, 1995b). PTB domains, now identified in over 50 human proteins, share a similar core fold consisting of a central β-sandwich capped on one end by a conserved C-terminal α-helix, and on the other by a variable length α-helix found between strands β1 and β2 (or β2 and β3). The canonical peptide-binding groove is located between the fifth β-strand and the C-terminal α-helix (x3 in Shc); however, PTB domains possess surprisingly flexible binding properties including a variable dependence on phosphorylation of the NPXY tyrosine (Uhlil et al, 2005). Numerous PTB domains (i.e. Dab or Numb) bind irrespective of phosphorylation or preferentially recognize unphosphorylated ligands, but members of the Shc and IRS-1/Dok families bind with higher affinity to phosphorylated motifs and serve as adaptors in normal and oncogenic receptor tyrosine kinase (RTK) signalling.

Although stimulation of the Ras pathway is a major component of Shc function, there are reasons to believe that Shc is involved in diverse processes. Though ShcA is an evolutionarily conserved protein, there is an intriguing absence of Y239/40 and Y313 tyrosines in more ancient organisms. None of the three Shc-like proteins in nematodes contain these sites, and Drosophila Shc (dShc) has Y239/40 but not Y313; it is only in the chordate lineage that these are fixed. As Y313 appears to be the more potent Ras/MAPK activator, the absence of this phosphorylation site could limit the ability of dShc to stimulate the Ras/ERK pathway (Lai et al, 1995; Velazquez et al, 2000). These data imply a basic function for ShcA independent of its tyrosine mediated recruitment of IQGAP1.
phosphorylation, association with Grb2, or activation of MAPK. In support of this idea, ShcA has been reported to regulate c-Myc expression (Gotoh et al., 1997), play a role in cell survival (Gotoh et al., 1996), and control aspects of cytoskeletal architecture (Khoury et al., 2001).

Mice lacking ShcA die at E11.5 with cardiovascular defects, including lack of cardiac trabeculation, deficiencies in angiogenesis, and maintenance between endothelial and mesenchymal cell contacts (Lai and Pawson, 2000). Whole mouse immunostaining also revealed a loss of MAPK activity using pERK antibodies. However, recent work has shown that a significant fraction of transgenic mice expressing ShcA proteins in which Y239/40 and Y313 have been replaced with phenylalanine (henceforth referred to as ShcA3F) are viable (Hardy et al., 2007). Though ShcA3F/3F mice that live to adulthood exhibit severe ataxia, this is a much milder phenotype than that observed for mice expressing ShcA lacking PTB domain function (E11.5 lethal, similar to ShcA−/−). These results support the notion that the central PTyr motifs in ShcA are dispensable for some of its biological activity, and hint that ShcA may have entirely independent signalling properties.

To search for unidentified pathways in the ShcA signalling network, we took a mass spectrometry-based approach to isolate new binding proteins. In this paper we show that ShcA interacts with the versatile scaffolding protein IQGAP1 (IQ-motif containing with homology to RasGAPs). This interaction is mediated through the ShcA PTB domain via a non-canonical binding mode, and we provide evidence that ShcA and IQGAP1 function downstream of activated receptors.

Results

Identification of novel ShcA-binding proteins

To begin exploring alternative pathways of ShcA signalling, we used a mass spectrometry-based approach to reveal unidentified binding partners. As bait, Flag-tagged wild-type p52 ShcA or ShcA3F were stably expressed in Rat1 fibroblasts (Figure 1A). The 3F protein carries Tyr-to-Phe mutations in the three CH1 domain residues that are targets for Grb2 (Y239/40 and Y313). We co-expressed in these cells an activated RTK ErbB2-YD, which carries a V664E mutation in the transmembrane region that increases homodimerization (Bargmann and Weinstein, 1988), and has only the ShcA PTB domain-binding site in the C-terminal tail (as defined by Dankort et al., 1997). This induced a transformed phenotype to these fibroblasts (Figure 1B). Proteins bound to ShcA after immunoprecipitation were separated by SDS–PAGE and stained with colloidal coomassie (Figure 1C). Cells expressing ErbB2-YD alone were used as a control. Proteins that associated specifically with both wild type and ShcA3F were excised and identified by tandem mass spectrometry (LC–MS–MS). A protein of 197 kDa, equally visible in precipitations of both mutant and wild-type ShcA, was identified as IQGAP1. No IQGAP1 peptides were found from a corresponding region of the control lane. IQGAP1 is known to affect membrane ruffles along the leading edges of migrating cells. ShcA is generally cytoplasmic or ER localized, and is re-distributed upon receptor activation to the cell surface (Lotti et al., 1996). IQGAP1 is found in a Ca2+-regulated complex with calmodulin (Ho et al., 1999), but in multiple cell types can accumulate at the leading edge of migrating cells (Mataraza et al., 2003, 2007; Watanabe et al., 2004; Yamaoka-Tojo et al., 2004). We initially utilized the Rat1 cell lines expressing ErbB2-YD and EGFP/Flag-ShcA (Figure 1A and B). The ErbB2-YD receptor is able to signal downstream through ShcA, but unlike wild-type ErbB2 has no direct Grb2-binding sites (Dankort et al., 1997, 2001). Wild-type cells showed pools of endogenous IQGAP1 localized generally in the cytoplasm, as well as to the cell cortex in cells nearing the edge of a monolayer (Figure 2A). However, we observed a clear loss of cytoplasmic IQGAP1 and its substantial recruitment to membrane ruffles along the leading edges of cellular protrusions in those cells which express ErbB2-YD and EGFP-ShcA. Although we detected exogenously expressed EGFP-ShcA or EGFP-ShcA3F in these regions, they also remained prominent throughout the cytoplasm. In contrast to IQGAP1, a control protein that is also cytoplasmic in unstimulated cells (GAPDH) was not significantly recruited to membrane ruffles (Figure 2B). As ErbB2-YD signals through ShcA, these data signified that receptor activation may promote a ShcA interaction with IQGAP1 that is not dependant on the phosphorylation of its CH1 tyrosines.

To address the dependence of IQGAP1 localization on exogenously expressed ShcA, wild-type Rat1 cells were immunostained for the endogenous proteins (Figure 2C). Both IQGAP1 and Shc were generally cytoplasmic in unstimulated cells, particularly localized in the perinuclear region (with IQGAP1 also in the cell cortex in cells nearing the edge of a monolayer). We then examined cells expressing ErbB2-YD, and once more found IQGAP1 in membrane regions, wherein it co-localized with a fraction of Shc. The Shc proteins remained prominent throughout the cytoplasm. Finally, we monitored the effect of EGF on IQGAP1 and Shc localization in wild-type fibroblasts. After 20 min of stimulation, Shc was clearly detected in EGF-induced endosomes (see also Supplementary Figure S1A).
It is interesting to note that IQGAP1 was not observed in these punctate vesicles and remained in the cytoplasm as well as concentrated at membrane ruffles. This evidence suggested that IQGAP1 membrane recruitment by activated receptors does not require the overexpression of ShcA, and that IQGAP1 does not interact with ShcA after receptor internalization.

IQGAP1 has a role in regulating epithelial cell junctions that is distinct from its activity in fibroblasts (Kuroda et al., 1998). We therefore chose to examine ShcA and IQGAP1 in 5637 bladder carcinoma cells, which show moderate but stable cell–cell contacts (Supplementary Figure S1B). Although IQGAP1 showed a basolateral distribution in these cells (similar to E-cadherin or β-catenin), Shc was localized in a diffuse manner, without evidence of interaction with IQGAP1.
the cytoplasm. Stimulation of these highly metastatic cells with EGF-induced rapid and extensive membrane ruffling around the edges of the monolayer. Immunostaining for IQGAP1 and ShcA revealed their presence in these lamellipodia, along with actin, after 5 min of EGF treatment (Figure 3A). Similar results were obtained in the A431 skin carcinoma cell line (Supplementary Figure S1C), but not with MDCK cells in which EGF-induced membrane ruffling was notably diminished or even absent (Supplementary Figure S2). Previous work has demonstrated similar dynamics upon EGF stimulation for fluorescently tagged Grb2 adaptor proteins (Sorkin et al., 2000), and to some extent ShcA (Sato et al., 2000). We consequently tested whether exogenously expressed, Venus-tagged IQGAP1 could be recruited to membranes upon EGF stimulation in 5637 cells. Indeed, although Grb2, ShcA, IQGAP1, and the Venus control are equally localized throughout the cytoplasm in unstimulated cells, only the Grb2, ShcA, and IQGAP1 proteins demonstrated clear membrane recruitment 5 min after the addition of EGF (Figure 3B). The Venus control remained cytoplasmic and displayed no or very little localization to the membrane. Moreover, we once more failed to observe IQGAP1 in the punctate endosomal vesicles that are evident in ShcA or Grb2 expressing cells following 20 min of EGF stimulation. This work corroborates our biochemical data, and establishes ShcA and IQGAP1 co-recruitment to membrane regions in both fibroblast and epithelial cell lines.

To further explore the role of ShcA in recruiting IQGAP1 to the cell cortex, we examined cells with reduced levels of ShcA protein for changes in IQGAP1 localization. Clonal lines of 5637 cells stably expressing shRNA against all three isoforms of ShcA were established, along with control lines expressing a scrambled shRNA sequence (Figure 4A). These cells were subjected to a time course of EGF stimulation, and control cells exhibited strong lamellipodia formation 5 min post-induction, in a manner analogous to wild-type cells. However, cells with reduced levels of ShcA showed greatly diminished levels of membrane ruffling, in most cases presenting no perceptible lamellipodia (Figure 4B and Supplementary Figure S3A). To determine whether IQGAP1 was still being recruited to the outer cortex in ShcA-depleted cells, we immunostained these cell lines with antibodies against endogenous IQGAP1. Though control cells clearly retained the capacity to recruit IQGAP1 to membrane ruffles, there was no detectable change in IQGAP1 localization in ShcA-reduced cells upon stimulation with EGF (Figure 4C). Even treatment with significantly higher concentrations of EGF (100 ng/ml) failed to induce strong membrane ruffling in ShcA-depleted cells (Supplementary Figure S3B/C). This lack of lamellipodia formation in ShcA-depleted cells likely correlates with a decrease in Rac1 activity. The loss of IQGAP1 has been highly associated with reduced migration in numerous cell types, and it is a powerful effector of Rac1 (Mataraza et al., 2003; Noritake et al., 2004; Watanabe et al., 2004). These data support a role for ShcA in recruiting IQGAP1 to membrane proximal regions in growth factor-stimulated cells.

Establishment of binding requirements for the ShcA–IQGAP1 complex

Previous reports have shown that IQGAP1 is tyrosine phosphorylated upon stimulation with EGF, PDGF, or VEGF (Blagoev et al., 2004; Yamaoka-Tojo et al., 2004; Kratchmarova et al., 2005), suggesting that IQGAP1 could directly associate
with the ShcA PTB or SH2 domain. To begin examining this, we first chose to study IQGAP1 phosphorylation and its relationship with ShcA. We have detected a basal IQGAP1 tyrosine phosphorylation using anti-pTyr antibodies (Figure 5A). To determine whether phosphorylation is further stimulated by RTKs, we monitored IQGAP1 pTyr levels in cells expressing ErbB2-NT (carrying the V664E activating mutation and all five C-terminal pTyr sites; as defined in Dankort et al (1997)). Not only was IQGAP1 phosphorylation significantly increased by ErbB2, but overexpression of ShcA could further augment this (Figure 5B). Moreover, there was an enhanced capacity for hyperphosphorylated IQGAP1 to co-precipitate ShcA compared to IQGAP1 with only basal levels of phosphorylation. These data support a relationship between IQGAP1 pTyr levels and its interaction with ShcA, but do not yet clarify whether the PTB or SH2 domains might mediate a direct interaction.

To map the IQGAP1-binding site, we carried out a series of in vitro-binding experiments. GST-tagged ShcA PTB and SH2 domains were expressed and purified from Escherichia coli. Glutathione beads carrying the recombinant domains were incubated with cell lysates expressing HA-tagged IQGAP1, and co-precipitating proteins were identified by anti-HA immunoblot. Though both domains consistently pulled down IQGAP1, the PTB domain interaction was considerably more robust (Figure 5C). This experiment is complicated by the ability of IQGAP1 to oligomerize, as well as its affinity for actin and microtubules (Bashour et al, 1997; Fukata et al, 2002; Ren et al, 2005). We therefore sought to narrow the region of IQGAP1 targeted by ShcA using a set of truncation mutants (Figure 5D) and Far Western analysis.

IQGAP1 fragments expressed and purified as HA-tagged proteins were separated by SDS–PAGE and transferred to a nitrocellulose membrane. The resulting membranes were incubated with GST-tagged PTB or SH2 domain, and direct interactions detected by anti-GST immunoblot (Figure 5E). Even though we observed no binding between IQGAP1 and the SH2 domain of ShcA (or GST alone), the PTB domain bound every fragment except ΔN. This suggested a direct interaction between the ShcA PTB domain and the N-terminal half of IQGAP1, in a region upstream of the WW domain.

In order to further categorize the binding site, we expressed and purified a series of GST-tagged fragments covering the entire N-terminal region (IQGAP1 residues 1–641). These were mixed with Ni-NTA beads carrying His-tagged PTB domain (Figure 6A). One fragment, spanning residues 401–533 of IQGAP1 (henceforth referred to as IQGAP1^{401–533}), was consistently precipitated by the PTB domain, whereas none interacted with SH2 domain. Unexpectedly, the interaction occurred directly after purification from E. coli, or with pre-incubation in EGF-activated cell lysates (not shown). This indicated that ShcA associates with IQGAP1 residues 401–533 even in the absence of tyrosine phosphorylation. As this is a non-canonical interaction for the ShcA PTB domain, we sought to further describe the binding mode.

NMR characterization of the PTB domain interaction with IQGAP1^{401–533}

ShcA is considered to have an archetypal pTyr-dependent PTB domain, but many PTB domains recognize motifs with a
ShcA PTB domain interacts with IQGAP1
MJ Smith et al

Figure 5 IQGAP1 is tyrosine phosphorylated and interacts directly with the ShcA PTB domain. (A) IQGAP1 is tyrosine phosphorylated in HEK 293T cells. Endogenous IQGAP1 was precipitated with anti-IQGAP1, and immunoblotting with anti-pTyr revealed phosphorylation (bottom panel). Anti-IQGAP1 immunoblot confirmed protein level (top panel), and precipitation with anti-Myc served as control. (B) Overexpression of ShcA induces phosphorylation of IQGAP1 in cells expressing activated ErbB2. Flag-tagged ShcA was co-expressed in HEK 293T cells with RFP-tagged ErbB2-NT or RFP alone as control. pTyr levels were determined by anti-pTyr immunoblot after immunoprecipitation of endogenous IQGAP1 (IP: top). Western blotting with anti-IQGAP1 confirmed protein levels (IP: middle), and with anti-Shc to determine co-precipitation (IP: bottom). Immunoblots of cell lysates with anti-RFP confirmed expression of ErbB2 (Lysate: top), while anti-Flag verified ShcA expression (Lysate: bottom). (C) Both the SH2 and PTB domains of ShcA precipitate full-length IQGAP1 from cell lysates. Recombinant domains were expressed in Escherichia coli as GST-fusion proteins, along with GST as a control. A coomassie stained gel shows loading of the purified proteins (bottom). Amino acid numbers are indicated according to murine IQGAP1. (D) Schematic showing IQGAP1 truncations. Fragments of IQGAP1 lacking the C-terminus (ΔC), the N-terminus (ΔN), the IQ motifs (ΔIQ), or the WW domains (ΔWW) were cloned and expressed with HA tags. Amino acid numbers are indicated according to murine IQGAP1. (E) The PTB domain of ShcA directly interacts with the N-terminal region of IQGAP1. Constructs expressing full-length IQGAP1, or the truncations, were expressed in HEK 293T cells. Proteins were immunoprecipitated with anti-HA and transferred to nitrocellulose membrane. Probing with GST-SH2 domain and anti-GST antibodies revealed no direct interactions (bottom panels). The PTB domain bound all truncations except ΔN (top panels). Reprobing with anti-HA confirmed expression of the IQGAP1 fragments (top panels).

The coalescence observed by this exchange regime is unfortunately detrimental to detailed structural determination. However, data obtained from peak-intensity changes were sufficient to identify a binding interface on the surface of the PTB domain. First, peak intensities derived from HSQC spectra of 300 μM free PTB domain, and PTB domain in the presence of 600 μM IQGAP1401–533 were calculated. The ratio (unbound/bound) of all assigned and non-overlapping backbone resonances were plotted (Figure 7A). It was clear that seven peaks exhibited extremely high levels of broadening compared with others (K139, I142, S149, G156, V167, K169, and V172). When mapped on the previously solved structure of the ShcA PTB domain in complex with an NPYpY peptide from TrkA (PDB:1SHC; (Zhou et al., 1995b)), these residues cluster to a surface region adjacent to the classic peptideligand binding groove (Figure 7B). This signified a potentially atypical binding mode for IQGAP1, and we next considered which residues in the IQGAP1 fragment are involved in the interaction.

We carried out a similar peak-intensity analysis on IQGAP1401–533 after first establishing an order of 2^7 structure elements using chemical shift indices (CSI; Figure 7C). This revealed a topology of five α-helices, but suggested helices 1 and 2 may be less well-defined than helices 3–5. Normalized peak intensities from HSQC spectra of 200 μM free

diverse set of properties (Forman-Kay and Pawson, 1999; Margolis et al., 1999). To explore how the ShcA domain associates with IQGAP1401–533, we utilized NMR to obtain residue-specific information on this protein–protein interaction. Multi-angle light scattering indicated that the 15 kDa IQGAP1 fragment was monomeric in solution, and CD data were sufficient to identify a binding interface on the surface of the PTB domain. First, peak intensities derived from HSQC spectra of 300 μM free PTB domain, and PTB domain in the presence of 600 μM IQGAP1401–533 were calculated. The ratio (unbound/bound) of all assigned and non-overlapping backbone resonances were plotted (Figure 7A). It was clear that seven peaks exhibited extremely high levels of broadening compared with others (K139, I142, S149, G156, V167, K169, and V172). When mapped on the previously solved structure of the ShcA PTB domain in complex with an NPYpY peptide from TrkA (PDB:1SHC; (Zhou et al., 1995b)), these residues cluster to a surface region adjacent to the classic peptideligand binding groove (Figure 7B). This signified a potentially atypical binding mode for IQGAP1, and we next considered which residues in the IQGAP1 fragment are involved in the interaction.

We carried out a similar peak-intensity analysis on IQGAP1401–533 after first establishing an order of 2^7 structure elements using chemical shift indices (CSI; Figure 7C). This revealed a topology of five α-helices, but suggested helices 1 and 2 may be less well-defined than helices 3–5. Normalized peak intensities from HSQC spectra of 200 μM free
IQGAP1_{401–533}, and IQGAP1_{401–533} in the presence of 400 μM PTB domain, were calculated and plotted (Figure 7D). We observed a more universal broadening in the IQGAP1 ligand, encompassing most of C-terminal α-helices 3, 4, and 5 (Figure 7E). This provides evidence that the ShcA PTB domain may require more than a short peptide motif to recognize IQGAP1, again suggesting a binding mode that may differ from more conventional NPXpY ligands.

ShcA PTB domain interactions with non-pTyr-based ligands

Nearly all ShcA PTB domain ligands contain the NPXpY motif, yet one previously identified binding partner is pTyr-independent. This consists of an NPLH sequence in the PTP-PEST phosphatase (Charest et al., 1996), an interaction likely analogous to NPXpY binding because of conservation of several key residues in the motif (ΦXXpXX). We therefore examined binding to a PTP-PEST-derived peptide by NMR (PLSFTNPLHSDDWH; Supplementary Figure S5). This peptide bound with a K_d of 6.9 μM as measured by ITC, and associated in the typical β5–α3 groove as determined by comparison with TrkA binding (Farooq et al., 2003). Using a molar excess of peptide, 86% of backbone amide resonances were assigned for the NPLH-bound PTB domain (Figure 8A). We next chose to establish if PTB domain binding to the two ligands (NPLH and IQGAP1_{401–533}) could happen independently, or was mutually exclusive. To address this, we tested whether an interaction with the NPLH peptide could protect PTB domain amide resonances from exchange broadening induced by IQGAP1_{401–533}. Isotopically labelled PTB domain was mixed with NPLH peptide at a 1:5 molar ratio to present two peaks (bound and unbound) of relatively equal intensity. Upon addition of IQGAP1_{401–533} we observed significant coalescence, as before (Figure 8B), but peaks originating from the NPLH-bound PTB domain were not as severely broadened in the residues most involved with binding to IQGAP1_{401–533} (seven obtained from Figure 7A). We measured broadening ratios as a function of peak intensity (unbound/bound) after normalization to maximum signal strength. Figure 8C shows these ratios for free and NPLH-bound PTB domain resonances derived from both highly and more minimally broadened peaks. Data from 12 resonances not substantially affected by IQGAP1_{401–533} (five randomly selected are shown) displayed equal broadening for unbound PTB domain (1.24 ± 0.2) versus NPLH-bound (1.14 ± 0.3), whereas severely broadened peaks (5/7 measurable) showed significantly higher levels for unbound (2.02 ± 0.3) compared with NPLH-bound (1.42 ± 0.3). This suggests that binding to the PTP-PEST peptide conveys a level of protection from the coalescence induced by IQGAP1_{401–533}, and that PTB domains occupied in the α3–β5 groove are less likely to interact with IQGAP1.

Discussion

ShcA and IQGAP1 recruitment to surface receptors

We have investigated the possibility that ShcA can signal downstream of activated receptors through pathways other than Grb2–SOS. The absence of Grb2-binding motifs in numerous invertebrate Shc orthologs, and the survival of...
Figure 7 Determination of the PTB domain-IQGAP1 binding interface. (A) PTB domain peak intensities in the presence or absence of unlabelled IQGAP1401–533 to resolve residues involved in binding (ratio of unbound/bound). A total of 7 resonances were extensively broadened (red zone) and another 12 moderately (yellow zone). Residues F152 and V172, (from Figure 5B), are marked. PTB domain 2' structure elements are at top. (B) Structural representation of residues in the ShcA PTB domain that interact with IQGAP1401–533. Most broadened amino acids cluster together (left, with structure of PTB domain bound to TrkA; PDB:1SHC (Zhou et al., 1995b)). Effected residues are shown in red (highly broadened) or yellow (moderately). The canonical n3–b5 NPxY-binding groove is marked. The potential-binding interface is also revealed by surface representation (right). (C) 13C 15N CSI versus residue number for IQGAP1401–533. Four consecutive positive CSI values indicate 2-helix; four negative values indicate a 2-strand. Values indicate fragment is composed of five helices (red outlines on positive region and cylinders below). Helices 2' and 3' are less defined, shown with dashed lines. The PSIPred 2' structure prediction is at bottom. (D) 1H/15N heteronuclear single quantum coherence (HSQC) peak intensities derived from IQGAP1401–533 in the presence or absence of unlabelled ShcA PTB domain to determine ligand-binding region. Peak intensities were normalized to maximum signal strength, and plotted in bound (black) and unbound (red) state. Amide resonances exhibiting significant broadening stand out in red. Representation of IQGAP1401–533 from CSI is at top. (E) Residues throughout helices 2'–5' exhibit significant broadening. Representation of ligand shows its topological order of 2' structure elements, and highlights regions showing extensive broadening (yellow). Amino acid numbering is from murine IQGAP1.

Figure 8 Binding to PTP–PEST peptide and IQGAP1401–533 is mutually exclusive. (A) Chemical shift perturbations induced by titration of PLsFTNPLHSDDWH peptide. Overlay of 1H/15N heteronuclear single quantum coherence (HSQC) spectra showing select PTB domain resonances in the absence (black) or presence (red) of a 1:10 molar ratio of peptide. Arrows indicate movement of resonances upon addition of peptide. (B) PTB domain interaction with NPLH peptide imparts protection from IQGAP1-induced broadening. Overlay of spectra showing PTB domain pre-mixed at a 1:5 ratio with NPLH peptide in the presence (red) or absence (black) of unlabelled IQGAP1401–533. Two peaks with ordinarily high levels of broadening in the absence of NPLH peptide are shown, as well as two exhibiting lower levels. Resonances derived from unbound PTB domain are marked with ‘U’, and those from peptide-bound with ‘B’. (C) Quantitation of peak intensity changes from PTB domain–NPLH complex in the presence or absence of IQGAP1401–533. Intensities were normalized to maximum signal strength, and ratio (unbound/bound) plotted for 5/7 peaks that display extensive broadening, and for peaks broadened to a lesser extent (random five selected). Unbound PTB domain data is dark blue or red, and NPLH-bound PTB domain in light blue or red. Average ratio for the typically broadened peaks on the unbound domain (2.02 ± 0.3) is significantly greater than on NPLH-bound (1.42 ± 0.3). Data from 12 other peaks, including the 5 shown, indicate relatively equal broadening (1.24 ± 0.2 unbound versus 1.14 ± 0.3 when NPLH-bound).

©2010 European Molecular Biology Organization
ShcA^{3F3F} mice indicate that alternative signalling pathways are an important component of ShcA function. Both wild type and ShcA^{3F3F} co-precipitated IQGAP1, a scaffolding protein known to effect cytoskeletal rearrangement (Kuroda et al., 1996), the MAPK pathway (Roy et al., 2005), Ca²⁺/calmodulin signalling (Patsath et al., 2006), and cadherin/catenin-mediated adhesion (Kuroda et al., 1998, 1999). Recent evidence linking IQGAP1 to EGF and PDGF (Blagoev et al., 2004; Kratchmarova et al., 2005), VEGF (Yamaoka-Tojo et al., 2004; Meyer et al., 2008), and FGF (Bensenor et al., 2007) signalling is consistent with a ShcA interaction, as this adaptor could recruit IQGAP1 to sites where receptors are engaging downstream proteins. Thus, we explored the possibility of a ShcA–IQGAP1 complex, which could have a role in effecting cytoskeletal changes downstream of activated receptors and represents the first steps towards the elucidation of Grb2-independent ShcA signalling.

Our data demonstrate that IQGAP1 is recruited to the cell surface along with ShcA. We detect both ShcA and IQGAP1 at membrane ruffles in fibroblasts expressing constitutively active ErbB2-YD, and both proteins are redistributed to lamellipodia around the edges of 5637 or A431 monolayers stimulated with EGF. This compares well with previous data linking IQGAP1 to insulin-induced ruffles in KB cells (Kuroda et al., 1996), VEGF-induced ruffles in endothelial cells (Yamaoka-Tojo et al., 2004), and FGF-induced ruffles in MDBK cells (Bensenor et al., 2007). We also demonstrate that cells with reduced levels of ShcA are deficient in lamellipodia formation after EGF stimulation, and that IQGAP1 tyrosine phosphorylation is induced by ErbB2 and further augmented by the overexpression of ShcA. Phosphorylation of IQGAP1 seems to be a widespread consequence of growth factor stimulation (Blagoev et al., 2004; Yamaoka-Tojo et al., 2004; Kratchmarova et al., 2005; Bensenor et al., 2007), yet the purpose for this remains unknown. As previous work implicated IQGAP1 in activation of Ras/MAPK signalling from the EGFR (Bourguignon et al., 2005; Sacks, 2006), we initially considered that its interaction with ShcA could restore some of the activity lost as a result of the 3F/Grb2-binding mutation. However, we have been unable to demonstrate this property of IQGAP1 (Supplementary Figure S6; Roy et al., 2004, 2005), and its ability to mediate Ras/MAPK activation through ShcA is still unclear. Instead, we believe the functional significance of ShcA–IQGAP1 redistribution to activated receptors involves cytoskeletal rearrangements mediated by IQGAP1 and Rho family GTPases.

ShcA has previously been implicated in a variety of cytoskeletal-mediated events, specifically cell migration and spreading. Cos7 cells in which ShcA is overexpressed have decreased numbers of actin stress fibres and a motile phenotype (Collins et al., 1999). ShcA has also been shown to rapidly associate with the actin cytoskeleton upon stimulation with NGF (Thomas et al., 1995), and is thought to influence activation of the Rac1 GEF, Vav1 (Grosman et al., 2002; Patrussi et al., 2007). ShcA^{−/−} embryos display cell–cell adhesion defects in the endothelium at E11.5, and MEFs derived from these mice display a rounded phenotype with abnormal focal complexes and actin stress fibres (Lai and Pawson, 2000). We have preliminary evidence that these MEFs also show a reduction in IQGAP1 recruitment to the cell periphery upon EGF stimulation (M Smith, unpublished data). Most notably, knockdown of ShcA has been suggested to inhibit HRG-dependent migration and lamellipodia formation in ErbB2-YD expressing cells, implying an analogous mechanism to that observed in our EGF-based experiments in 5637 cells (Marone et al., 2004). Finally, ShcA has previously been observed in membrane ruffles generated by EGF/Erbb2 chimeras (Lotti et al., 1996). In fact, study of cellular transformation induced by ErbB2, which is amplified in 20–30% of human mammary carcinomas, provides intriguing evidence of Grb2-independent ShcA signalling. Four pTyr sites in the cytoplasmic tail of ErbB2 have potent transforming potential in fibroblasts, two of which recruit Grb2 either directly (YB-Y1144) or through ShcA (YD-Y1226/7) (Dankort et al., 1997). However, activated ErbB2 receptors having only the YB or YD sites have distinct abilities to promote epithelial–mesenchymal transition (EMT). Although the YD–ShcA site promotes breakdown of E-cadherin junctions and dispersal of epithelial colonies, the YB–Grb2 site does not (Khoury et al., 2001). It is possible that a lack of IQGAP1 recruitment by Grb2 alone is at least partially responsible for the observed decrease in motility and preservation of E-cadherin contacts in ErbB2-YB expressing cells. Indeed, IQGAP1 has been implicated in the metastasis of many cancers (Clark et al., 2000; Johnson et al., 2009), and has been shown to effect cytoskeletal changes and cadherin-mediated adhesion downstream of growth factor receptors.

IQGAP1 association with VEGFR-2 is the best-characterized link between IQGAP1 and growth factor signalling to date. In a mechanism seemingly distinct from ShcA-mediated IQGAP1 recruitment downstream of ErbB-family receptors, IQGAP1 associates with VEGFR-2 either directly (Yamaoka-Tojo et al., 2004) or through a bridging connection mediated by c-Src (Meyer et al., 2008). VEGF stimulation results in IQGAP1 phosphorylation and re-distribution to membrane ruffles, which involves activation of Rac1 and breakdown of VE-cadherin-mediated contacts. This corroborates the idea that ShcA–IQGAP1 recruitment to ErbB-family receptors could influence cell shape and motility through Rac1. Rac activation stimulated by growth factor receptors is known to be crucial for lamellipodia formation, cell spreading, and migration, yet the intracellular pathways connecting cell-surface receptors to Rac are still poorly understood. Although activation is achieved by recruiting GEFs such as SOS and Vav2 (Pandey et al., 2000; Kurokawa et al., 2004; Sini et al., 2004), effectors would be essential components for altering cell shape and movement. As IQGAP1 functions to stabilize Rac1 and Cdc42 in their GTP-bound states, and data have shown that it can directly bind and polymerize actin (Bashour et al., 1997; Bensenor et al., 2007; Le Clainche et al., 2007), IQGAP1 should be considered an effector for these GTPases (Zhang et al., 1998; Kurella et al., 2009). Intriguingly, the presence of IQGAP1 in cells has proven to be an absolute requirement for the proper development of filopodia and lamellipodia (Fukata et al., 2002; Le Clainche et al., 2007). Indeed, the loss of IQGAP1 signals a decrease in motility for numerous cell types (Bensenor et al., 2007; Dong et al., 2008; Jadeski et al., 2008), and is the likely explanation for the absence of EGF-induced lamellipodia in 5637 cells with reduced levels of ShcA. We can therefore speculate that ShcA-mediated IQGAP1 signalling from growth factor-stimulated receptors leads to Rho-family GTPase activity, directing lamellipodia formation and motility.
The PTB domain of ShcA mediates an interaction with IQGAP1

We have demonstrated a direct, non-canonical interaction between the ShcA PTB domain and IQGAP1 residues 401–533. Several lines of evidence indicate that this ligand is not recognized by a conventional PTB domain-binding mode. Foremost, only an NXXF motif near the C-terminus of IQGAP1 has any semblance to a PTB domain-binding site, and deletion of this motif did not significantly abolish exchange broadening as observed by NMR (Supplementary Figure S7A/B). We have also been unable to derive any short peptides from this region that are recognized by ShcA (Supplementary Figure S7C/D). Furthermore, an intermediate exchange regime is not typical of ligands binding in the α3–β5 groove (most exhibit slow exchange characteristics (Zhou et al., 1995a; Li et al., 1998, 2008; Yan et al., 2002; Stolt et al., 2004)), and at the very least this is indicative of uncharacteristic kinetic properties for this interaction when compared to NXPxY-type ligands. Finally, IQGAP1-induced broadening was specific to seven PTB domain resonances that cluster to a region outside of the usual α3–β5 binding pocket. High-resolution structural data are required to determine whether there is an overlap between these sites, but the seven PTB domain residues are completely conserved in four mammalian Shc homologues and in more ancient orthologs. IQGAP1 residues 401–533 are also well conserved (over 90% identity in mammalian IQGAP1s). This suggests preservation of the ShcA–IQGAP1 complex and hints that other Shc proteins may be similarly involved with members of the IQGAP family.

Classical ligands of the NXPxY variety bind the ShcA PTB domain with high affinity, having dissociation constants ranging from 53 nM (TrkA pY490) to 5.3 μM (EGFR pY1086) (Zhou et al., 1995a). We were unable to resolve an accurate Kₐ for IQGAP1 using ITC, because of highly unfavourable heats of dilution, yet binding appears to be in the high μM range and weaker than NXPxY peptides. One intriguing possibility is that this affinity could be augmented by oligomerization of IQGAP1, whereby multiple sites could impart avidity. Data have shown that IQGAP1 exists as a combination of monomers, dimers, and larger oligomers, and that this is dependent on residues in the N-terminal region (763–863) directly adjacent to our identified PTB domain-binding site (Ren et al., 2005). Future assays employing larger fragments of the IQGAP1 protein should clarify this.

An NPLH sequence in PTP–PEST, thought to mediate negative regulation of lymphocyte activation (Davidson and Veillette, 2001), was the only previously reported pY-dependent target for the ShcA PTB domain. The conservation of Asn and Pro in the NPLH sequence suggested binding in the α3–β5 pocket, and comparison of our NMR chemical shift data with published results on TrkA (NXPxY) binding (Farooq et al., 2003) confirmed this (Supplementary Figure SSC). Competition between this peptide and IQGAP1 demonstrated a mutually exclusive relationship. Owing to the moderate affinity of the NPLH peptide (6.9 μM), the outcome would likely be more pronounced if a high-affinity NXPxY ligand were utilized. In fact, one of the seven PTB domain residues involved in the IQGAP1 interaction, Lys169, has a major role in coordinating pY recognition (Zhou et al., 1995b). Previous data have also shown that the ShcA PTB domain operates by an induced-fit mechanism (Farooq et al., 2003). When unbound, residues constituting the ligand-binding pocket in the NXPxY-bound form are structurally disordered, and are reorganized in the presence of peptide. This supports the idea that PTB domains engaged in the α3–β5 groove may no longer recognize IQGAP1.

Using the data described here, we propose a model for ShcA recruitment of IQGAP1 to activated receptors. In resting cells, the PTB domain of ShcA could mediate an interaction with IQGAP1 in the cytoplasm. We speculate this complex may be dependent upon oligomerization of IQGAP1, or its further regulation by binding partners such as calmodulin. Upon stimulation, ShcA would be recruited to membrane proximal sites, wherein activated receptors present pY motifs. Owing to a higher PTB domain affinity for these sites, and its inability to associate with the two ligands simultaneously, IQGAP1 would dissociate and begin effecting cytoskeleton rearrangements and breakdown of cell contacts. ShcA would now activate Ras/MAPK through Grb2–SOS, and these signalling complexes can be observed in endosomal compartments where we do not detect IQGAP1.

We have demonstrated alternative modes of ShcA signalling, in which ShcA engages a transient interaction with IQGAP1 and promotes receptor-dependent signalling at lamellipodia. More work is now required to completely characterize the interplay between these proteins, and the functions of this complex in response to various extracellular stimuli.

Materials and methods

Plasmid constructs and antibodies, immunofluorescence, immunoprecipitation, circular dichroism and light scattering procedures are described in Supplementary data.

Cell culture

HEK 293T, Rat1, Madin–Darby canine kidney (MDCK), A431 and 5637 cells were maintained in Dulbecco’s modified Eagle’s medium containing 10% heat-inactivated fetal calf serum and antibiotics. For exogenous expression, cells were transiently transfected with PEI (Boussif et al., 1995), lipofectamine 2000, or lipofectamine LTX (Invitrogen). Selection was done in 1–2.5 μg/ml puromycin (Sigma). EGF (PeproTech) was added after culturing overnight in the absence of serum at indicated times and concentrations. Pervanadate stimulation was for 30 min at 37 C.

Purification of recombinant proteins

Glutathione S-transferase or His-tagged proteins were expressed in E. coli BL21 cells grown in LB media by induction with isopropyl-b-D-thiogalactopyranoside (IPTG) at 15 C overnight. Cells were lysed and sonicated in 20 mM Tris (pH 7.5), 150 mM NaCl, 10% glycerol, 0.4% NP-40, protease inhibitors (Roche), 1 mM phenylmethylsulfonyl fluoride (PMSF), 10 ng/ml DNase, and either 1 mM dithiothreitol or 10 mM Na3VO4. Lysate was cleared by centrifugation and incubated with glutathione (Amersham Pharmacia Biotech) or Ni-NTA (Qiagen) resin at 4 C for 2 h. Bound proteins were eluted using 40 mM glutathione (Sigma), 250 mM imidazole (BioShop), or thrombin cleavage (Calbiochem). Concentrated proteins were purified to homogeneity by size exclusion chromatography using either an S75 or S200 26/60 column (GE HealthCare).

Identification of interacting proteins by mass spectrometry

Rat1 cells were lysed in TX100 buffer (20 mM Tris (pH 7.5), 137 mM NaCl, 10% glycerol, 1% Triton X-100, 1 mM sodium vanadate, 1 mM PMSF, and protease inhibitors) and cleared by ultracentrifugation. Lysate was passed through a 0.45 μm filter (Fall Corporation) and pre-cleared with mouse agarose (Sigma) at 4 C for 30 min. Supernatant was incubated with M2 Flag-agarose (Sigma) for 2 h at 4 C. Beads were washed three times with TX100 buffer before

©2010 European Molecular Biology Organization
elution with 1 mg/ml Flag peptide (20 min at RT). After separation by SDS–PAGE, proteins were visualized with colloidal coomasie (GelCode Blue Stain Reagent; Pierce). Bands were excised and reduced, alkylated, and digested with trypsin using a ProGEST Tryptic Digestion Robot (Genomic Solutions). Peptides were analyzed by LC-MS (HP 1100 HPLC System (Agilent) and LTQ Mass Spectrometer (ThermoElectron)). Resultant MS–MS spectra were searched using the MASCOT programme against the NCBI non-redundant DataBase.

Isothermal titration calorimetry (ITC)
Calorimetry experiments were performed using a Microcal VP-ITC instrument. Stock solutions were diluted into filtered and degassed 20 mM Tris (pH 7.5), 100 mM NaCl, and 1 mM DTT. Experiments were carried out at 20°C. Heats of dilution were determined from control experiments in which peptide was titrated into buffer alone. Data were fitted using the software Origin 7 (Microcal).

NMR Spectroscopy
All NMR data were recorded at 25–30°C on an 800 MHz Bruker AVANCE II spectrometer or 600 MHz Bruker AVANCE III spectrometer equipped with TCI CryoProbes. Two-dimensional 1H/15N HSQC (Bodenhausen and Ruben, 1980) spectra and triple resonance HNCACB (Wang, 2004) spectra were collected for the backbone chemical shift assignments. All NMR samples were prepared in buffer containing 20 mM Tris (pH 7.5), 100 mM NaCl, 1 mM DTT, and 10% D2O. Peptide for titrations of sequence ‘PLSFTNPILSDDWH’, derived from murine PTP–PEST (ID: 19248), was produced by Sigma. The spectra were processed with NMRPipe (Delaglio et al, 1995) and resonance assignments made with NMRView (Johnson, 2004). Backbone assignments have been deposited in the Biological Magnetic Resonance Data Bank with accession codes 16470 and 16471 for NPLI-bound ShcA PTB domain and IQGAPI80–535, respectively.

Supplementary data
Supplementary data are available at The EMBO Journal Online (http://www.embojournal.org).

Acknowledgements
This work was supported by grants from the Canadian Cancer Society (CCS) (MI) (TP). MIS was a recipient of an Ontario Cancer Institute (OCI) Fellowship. WRH was supported with a CCS studentship. MJ holds a Canada Research Chair in Cancer Structural Biology.

Conflict of interest
The authors declare that they have no conflict of interest.

References
Bargmann CI, Weinberg RA (1988) Increased tyrosine kinase activity associated with the protein encoded by the activated neu oncogene. Proc Natl Acad USA 85: 5394–5398
Bodenhausen G, Ruben DJ (1980) Natural abundance 15N M Rb y spectra and triple resonance HNCA, CBCACONH (Grzesiek and Bax, 1993), and HNCA (Ikura et al, 1990) spectra were collected for the backbone chemical shift assignments. All NMR samples were prepared in buffer containing 20 mM Tris (pH 7.5), 100 mM NaCl, 1 mM DTT, and 10% D2O. Peptide for titrations of sequence ‘PLSFTNPILSDDWH’, derived from murine PTP–PEST (ID: 19248), was produced by Sigma. The spectra were processed with NMRPipe (Delaglio et al, 1995) and resonance assignments made with NMRView (Johnson, 2004). Backbone assignments have been deposited in the Biological Magnetic Resonance Data Bank with accession codes 16470 and 16471 for NPLI-bound ShcA PTB domain and IQGAPI80–535, respectively.

The authors declare that they have no conflict of interest.

Supplementary data
Supplementary data are available at The EMBO Journal Online (http://www.embojournal.org).

Acknowledgements
This work was supported by grants from the Canadian Cancer Society (CCS) (MI) (TP). MIS was a recipient of an Ontario Cancer Institute (OCI) Fellowship. WRH was supported with a CCS studentship. MJ holds a Canada Research Chair in Cancer Structural Biology.

Conflict of interest
The authors declare that they have no conflict of interest.

References
Bargmann CI, Weinberg RA (1988) Increased tyrosine kinase activity associated with the protein encoded by the activated neu oncogene. Proc Natl Acad USA 85: 5394–5398
Bodenhausen G, Ruben DJ (1980) Natural abundance 15N M Rb y spectra and triple resonance HNCA, CBCACONH (Grzesiek and Bax, 1993), and HNCA (Ikura et al, 1990) spectra were collected for the backbone chemical shift assignments. All NMR samples were prepared in buffer containing 20 mM Tris (pH 7.5), 100 mM NaCl, 1 mM DTT, and 10% D2O. Peptide for titrations of sequence ‘PLSFTNPILSDDWH’, derived from murine PTP–PEST (ID: 19248), was produced by Sigma. The spectra were processed with NMRPipe (Delaglio et al, 1995) and resonance assignments made with NMRView (Johnson, 2004). Backbone assignments have been deposited in the Biological Magnetic Resonance Data Bank with accession codes 16470 and 16471 for NPLI-bound ShcA PTB domain and IQGAPI80–535, respectively.

The authors declare that they have no conflict of interest.
Gotoh N, Toyoda M, Shibuya M (1997) Tyrosine phosphorylation sites at amino acids 239 and 240 of Shc are involved in epidermal growth factor-induced mitogenic signaling that is distinct from Ras/mitogen-activated protein kinase activation. Mol Cell Biol 17: 1824–1831

