Corrigendum

Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization

Han Liu, Xuehong Deng, Y John Shyu, Jian Jian Li, Elizabeth J Taparowsky and Chang-Deng Hu
doi:10.1038/sj.emboj.7601183

doi:10.1038/si.emboj.7601020

The authors would like to make the following corrections to the above article.

Owing to an author error, the representative images presented in Supplementary Figure 5B (right panel) and Figure 3A (middle left) were from the same file by mistake. The reused image in Supplementary Figure 5B was replaced with the corrected one from the original experiments. Note that the quantified results presented in both figures are from the original experiments and remain the same.

In the Materials and methods section under the subheading ‘Analysis of subcellular localization of AP-1 dimers and proteins’, the number of cells used for quantification should be ‘50’ instead of ‘100’ (line 9, left column, page 1067). This correction applies to all quantified results of subcellular localization of AP-1 dimers and proteins throughout the paper. Note that this correction does not affect the conclusions of the article.

As GFP and its variants have tendencies to form dimers when highly expressed (Tsien, 1998; Shaner et al., 2005), it was postulated by some readers that dimerization of Venus at the C-terminus of ATF2 may unmask the NES and lead to the cytoplasmic localization of ATF2-Venus. To test this possibility, the authors have performed the following two experiments. First, the authors used a monomeric form of yellow fluorescent protein mutant, Citrine(206K) (Griesbeck et al., 2001; Zacharias et al., 2002; Shaner et al., 2005), and fused Citrine(A206K) to the C-terminus of ATF2. Transient expression of the fusion protein FLAG-ATF2-Citrine(A206K) in COS-1 cells resulted in a predominant cytoplasmic localization compared to Citrine(A206K) only (Supplementary Figure 7A). Second, the authors fused Venus to the N-terminus of ATF2 and examined the subcellular localization of HA-Venus-ATF2. Again, HA-Venus-ATF2 was also predominantly localized in the cytoplasm compared to HA-Venus (Supplementary Figure 7B). Given that the observed subcellular localization of ATF2-Citrine(A206K) and Venus-ATF2 is consistent with that of ATF2-Venus reported in the above article, the authors believe that dimerization of Venus is not the cause of the predominantly cytoplasmic localization of ATF2-Venus. These results, together with all other experimental evidence provided in the above article, strongly support the major finding that ATF2 is a nucleocytoplasmic shuttling protein and its nuclear localization depends on the dimerization with the Jun family of proteins.

The authors apologize for any inconvenience caused.

Supplementary data
Supplementary data are available at The EMBO Journal Online.

References