Supplementary Material

Mutations in the BH3-binding pocket of Bcl-x_L correlate dimer formation with mitochondrial import and bioactivity

Previously, G138A was found to block Bcl-x_L binding to Bax in the presence of detergent and to inhibit Bcl-x_L bioactivity (Sedlak et al., 1995). Confirming the prior report, this mutant was substantially deficient in anti-apoptotic activity (Supplemental Figure 1A) and Bax binding (data not shown). We found that this mutation also reduced Bcl-x_L homodimer formation in the absence of detergents (Supplemental Figure 1B). The Y101K mutant of Bcl-x_L was reported to prevent Bcl-x_L binding to Bax in the presence of detergent but not to inhibit Bcl-x_L bioactivity (Minn et al., 1999). Unlike G138A, this mutation does not inhibit Bcl-x_L homodimerization (Supplemental Figure 1B) and retains bioactivity (Supplemental Figure 1A). There was no dramatic difference in folding between wt, Y101K and G138A Bcl-x_L as detected by limiting proteolysis analysis (data not shown). Thus, in contrast to their ability to heterodimerize with Bax, the ability of the Bcl-x_L mutants in the BH3-binding pocket to homodimerize correlates with bioactivity. However, although both Y101K and G138A failed to bind Bax both were able to bind Bad (data not shown). This extends the correlation between homodimer formation and bioactivity of Bcl-x_L seen with the C-tail mutations in Figure 3. How does homodimer formation contribute to the bioactivity of Bcl-x_L? As mitochondrial binding of Bcl-x_L appears essential for bioactivity, we examined the cell free import of BH3-binding pocket mutants of Bcl-x_L into mitochondria. The G138A
mutant reduced to form dimers, lacked bioactivity, and showed less import into mitochondria whereas the Y101K mutant retained dimer formation, bioactivity, and imported into mitochondria as well as wt Bcl-x_L (Supplemental Figure 1C). All three of these Bcl-x_L proteins have the same C-tail sequence that would be predicted to bind mitochondria identically (Figure 3E, Kaufmann et al., 2003). Thus, Bcl-x_L homodimer formation correlates with mitochondrial import competence and may be important for this process (Table I).

Supplemental Figure 1. Mutations at G138 and Y101 in the BH3-binding pocket of Bcl-x_L correlate dimer formation with mitochondrial import and bioactivity. (A) Viability assays of wt Bcl-x_L and Bcl-x_L mutants. Jurkat cells were co-transfected with YFP-Bcl-x_L constructs and Bax (ratio, 1:2) and incubated for 12 h and treated with 100 µM etoposide for 6 h. The viability assay experiment was performed as described in Figure 3C. (B) Co-IP of C-terminal mutants of myc-Bcl-x_L and Bcl-x_L. Cos-7 cells were co-transfected with each mutant of myc-Bcl-x_L and Bcl-x_L, as indicated in the figure (ratio, 1:1), and myc-Bcl-x_L was immunoprecipitated from the cytosol fraction (S-100) of cells by anti-myc antibody. The immunoprecipitated and the input samples were analyzed by Western blotting with anti-Bcl-x_L 4C3 antibodies. (C) G138A mutant does not import into mitochondria in vitro. Radiolabeled wt Bcl-x_L, Y101K, and G138A were incubated separately with mitochondria isolated from early stage apoptotic HeLa cells for 15 min at 37°C and the import experiment was performed as described in Figure 3D.
Supplemental Figure 1.