The DEXD/H-box RNA helicase RHII/Gu is a co-factor for c-Jun-activated transcription

Jukka Westermark1,2, Carsten Weiss1,4, Rainer Saffrich1, Jürgen Kast1,5, Anna-Maria Musti1,6, Matthias Wessely1, Wilhelm Ansorge1, Bertrand Séraphin1, Matthias Wilms7, Benigno C. Valdez8 and Dirk Bohmann1,3,4

1EMBL, D-69117 Heidelberg, Germany, 2Turku Centre for Biotechnology, University of Turku and Abo Akademi University, 20520 Turku, Finland, 3Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, 4Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA, 5Università della Calabria, I-87100 Rende (CS), Italy and 6CGM-CNRS, F-91918 Gif sur Yvette Cedex, France

Present address: Biomedical Research Centre, Vancouver, BC, Canada V6T 1Z3

Corresponding authors
E-mail: Dirk_Bohmann@urmc.rochester.edu or jukwes@utu.fi

Tandem affinity purification (TAP) and mass spectrometric peptide sequencing showed that the DEAD-box RNA helicase RHII/Gu is a functional interaction partner of c-Jun in human cells. The N-terminal translocation region of c-Jun interacts with a C-terminal domain of RHII/Gu. This interaction is stimulated by anisomycin treatment in a manner that is concurrent with, but independent of, a-Jun phosphorylation. A possible explanation for this effect is provided by the observation that RHII/Gu translocates from nucleolus to nucleoplasm upon anisomycin or UV treatment or when JNK signaling is activated by overexpression of a constitutively active form of MEKK1 kinase. Several experiments show that the RNA helicase activity of RHII/Gu supports c-Jun-mediated target gene activation: dominant-negative forms of RHII/Gu, as well as a neutralizing antibody against the enzyme, significantly interfered with c-Jun target gene activity but not with transcription in general. These findings clarify the mechanism of c-Jun-mediated transcriptional regulation, and provide evidence for an involvement of RHII/Gu in stress response and in RNA polymerase II-catalyzed transcription in mammalian cells.

Keywords: c-Jun/helicase/RHII/Gu/TAP

Introduction

The AP-1 family transcription factor c-Jun plays a pivotal role in the genetic responses of cells to a number of extracellular stimuli, including stress insults, apoptotic and differentiation signals. Many of these signals are transduced to c-Jun by signaling pathways that culminate in the activation of Jun-N-terminal kinase (JNK), causing the phosphorylation and activation of c-Jun (Leppä and Bohmann, 1999; Davis, 2000).

In spite of a large body of literature on the topic, the molecular mechanism by which the transcriptionally active form of c-Jun stimulates mRNA synthesis is still incompletely understood, but it presumably involves the recruitment of specific co-factors. Several c-Jun-interacting proteins have been described (for a review see Chinenov and Kerppola, 2001). Examples are the co-activators CBP and p300, which bind to the N-terminal transactivation domain of c-Jun in vitro and enhance AP-1-mediated promoter activation (Chinenov and Kerppola, 2001). Remarkably, none of the proteins reported to bind to the transactivation domain of c-Jun and to facilitate c-Jun-mediated transcription has been shown to interact with c-Jun in vivo binding assays. In that regard, a further development of methods for the identification of proteins that participate in c-Jun-mediated gene activation in vivo is required.

Recent progress in mass spectrometric protein sequencing technology as well as the rapid growth of protein and genome databases have made direct approaches to map protein–protein interactions feasible. Because the identification of interacting proteins by a biochemical route is not based on a transcripcional read-out, as is the case in yeast two-hybrid assays, it is also amenable to the study of transcription factor complexes.

Results

Identification of RHII/Gu RNA helicase as an interaction partner of c-Jun by tandem affinity purification

In order to isolate proteins that interact with the transactivation domain of c-Jun in human cells, we employed the tandem affinity purification (TAP) method (Rigaut et al., 1999). Briefly, the protein of interest is fused to two ligand-binding domains, one derived from a calmodulin-binding peptide, the other from protein A (Figure 1A). This construction endows the bait protein with high affinity for both calmodulin and IgG affinity purification resins. The calmodulin-binding peptide and protein A affinity tags are separated by the recognition sequence for tobacco etch virus (TEV) protease, permitting proteolytic elution of the fusion protein from the IgG affinity resin (Rigaut et al., 1999; Puig et al., 2001). The tagged protein, potentially in a complex with interacting factors, can be purified from crude extracts by two consecutive affinity chromatographic steps.

We developed a mammalian expression vector that codes for a fusion protein consisting of amino acids 1–223 of c-Jun linked to the TAP tandem affinity purification domain (c-Jun1–223TAP, Figure 1A). For a typical experiment such as the one shown in Figure 1B, 106 293 cells
were transiently transfected with the c-Jun1–223TAP expression construct. After 36 h, nuclear extracts were prepared and applied to dual affinity chromatography according to the TAP protocol. The purified eluates contained a number of polypeptide species that co-purified specifically with the TAP-tagged c-Jun bait, but were absent in the fraction purified from control cells (Figure 1B). These products were therefore candidates for c-Jun-interacting proteins.

Bands representing putative c-Jun-binding proteins were purified by SDS–PAGE and analyzed by mass spectrometric peptide sequencing. Comparison of the obtained peptide sequences with protein databases identified several proteins that previously had been linked to mRNA metabolism and transcription. Here we report the identification of three proteins, the DNA/RNA helicase NDHII, hnRNPM and the RNA helicase RHII/Gu, as novel interaction partners for c-Jun. The characterization of other interacting proteins will be reported elsewhere.

The identification of RHII/Gu (Valdez et al., 1996) was based on sequences obtained from three peptides showing complete identity to the human RHII/Gu protein sequence (see Figure 1C and figure legend). The other interaction partners were identified in a similar manner.

To verify the identity of NDHII, RHII/Gu and hnRNPM as c-Jun-binding partners, we performed a small-scale TAP experiment using an HT–1080 human fibrosarcoma line that carries the c-JunTAP expression vector integrated into...
its genome. Immunoblot analyses with NDHII-, RHIIGu- and hnRNP M-specific antibodies revealed cross-reactive protein species of the expected molecular masses in the relevant eluate fraction (Figure 1D, upper panel). We conclude that NDHII, RHIIGu and hnRNP M were retained on the column by means of their interaction with c-JunTAP. These results validate the mass spectrometric identification of NDHII, RHIIGu and hnRNP M as c-Jun-binding proteins. Furthermore, the experiment confirms that the interaction of c-Jun with the analyzed proteins is not restricted to 293 cells and occurs when the c-JunTAP fusion protein is expressed at levels comparable with endogenous c-Jun as they are present in the stably transfected HT-1080 cells.

DEAD-box RNA helicases have been identified previously as auxiliary factors in transcription and translation processes (Eisen and Lucchesi, 1998; Luking et al., 1998; Linder and Dauer, 2000). NDHII, for example, binds CREB, a leucine zipper transcription factor and a distant relative of c-Jun. NDHII mediates an interaction between RNA polymerase II (pol II) and CREB-binding protein (CBP) and supports CREB-mediated transcription activation in reporter gene assays, an effect that requires the ATPase function of the enzyme (Nakajima et al., 1997). It is thus not surprising that NDHII also interacts with c-Jun. It is conceivable that this enzyme supports c-Jun transcription in a manner comparable with its role in CREB target gene activation.

Interestingly, one other newly identified c-Jun interaction partner, RHIIGu, is a human DEAD-box RNA helicase (Figure 1B and D). Unlike NDHII, however, RHIIGu has not been implicated previously in RNA pol II-mediated transcription. The presence of RHIIGu in a complex with c-Jun thus prompted further studies on the role of this enzyme in AP-1-regulated gene expression.

RHIIGu binds c-Jun directly

To study whether the interaction between RHIIGu and c-Jun is mediated by direct protein–protein contact, *in vitro* pull-down assays were performed. Different bacterially expressed GST–RHIIGu fusion proteins were immobilized on glutathione–beads and subsequently incubated with various sources of c-Jun. Immunoblot analyses revealed that both bacterially expressed c-Jun (c-JunHis₆) and c-Jun present in 293 cell nuclear extracts were retained specifically on the immobilized C-terminal domain of RHIIGu (amino acids 646–801; Figure 2A, lanes 3 and 6). However, no interaction of c-Jun with the N-terminal part of RHIIGu or with GST alone could be detected (Figure 2A, lanes 1, 2, 4 and 5). This result shows that the interaction observed by the TAP method can also be reconstituted *in vitro* and, importantly, that it is direct and does not rely on any intermediary proteins that might have been present in 293 or HT-1080 cells. Furthermore, these results show that RHIIGu protein may interact with the non-fused wild-type form of c-Jun present in nuclear extracts.

Analysis of deletion mutants of RHIIGu in the pull-down assay revealed that the c-Jun interaction domain on RHIIGu resides in the most C-terminal part of the protein between amino acids 749 and 801 (Figure 2A). Importantly, the interaction between c-Jun and GST–Gu 749–801 was not affected by addition of high concentrations of ethidium bromide or RNase A, or by 600 mM NaCl (Figure 2B), demonstrating that the interaction
between the recombinant proteins is not mediated by contaminating DNA or RNA, and is stable at moderately high ionic strength.

Interaction between endogenous c-Jun and RHII/Gu

After showing that RHII/Gu and c-Jun interact in vitrō or after overexpression of c-Jun in transfected cells, it was important to show that the interaction between the proteins at their endogenous expression levels also occurs in cells. To this end, we used two independent approaches. First, we performed co-immunoprecipitation studies on nuclear extracts from non-transfected 293 and HT-1080 cells. Immunoblotting confirmed that c-Jun antisera efficiently co-immunoprecipitated endogenous RHII/Gu and c-Jun from both cell lines, whereas no precipitation of either of the proteins was observed with control pre-immune serum (PI) (Figures 3A and 4B). This experiment demonstrates that c-Jun and RHII/Gu proteins interact in human cells at their endogenous level of expression.

In the next experiment, we used a DNA affinity purification assay to examine whether RHII/Gu interacts with DNA-bound c-Jun. A biotinylated double-stranded DNA oligonucleotide probe, containing a consensus AP-1 binding site, retrieved both c-Jun and RHII/Gu from extracts of non-transfected HT-1080 and 293 cells (Figure 3B and data not shown). In contrast, no significant binding of either c-Jun or RHII/Gu proteins was observed with a control oligonucleotide carrying a mutated AP-1 binding site (Figure 3B). This finding indicates that the binding of c-Jun to DNA and to RHII/Gu is not mutually exclusive, and c-Jun could conceivably deliver RHII/Gu to a transcription unit.

Anisomycin stimulates c-Jun–RHII/Gu interaction

The part of c-Jun that is present in c-Jun\(^1\)-AspTAP carries regulatory phosphorylation sites for the MAP kinase JNK. To examine whether the interaction between RHII/Gu and c-Jun might be influenced by the phosphorylation state of the latter, the binding of RHII/Gu to different phosphorylation site mutants of c-Jun\(^1\)-AspTAP was examined (Figure 4A). In c-Jun\(^1\)-AspTAP, the JNK phosphorylation sites were replaced with aspartic acid to create a mimic of phosphorylated c-Jun (Treier et al., 1995). A c-Jun\(^1\)-AspTAP construct, with alanine substitutions of the phosphorylation sites, was generated in order to create an uninduced, inactive form of c-Jun. 293 cells were transiently transfected with c-Jun\(^1\)-AspTAP, c-Jun\(^2\)-AspTAP or c-Jun\(^2\)-AspTAP. In addition, these cells received an expression vector for \(\Delta MEK1\), a constitutively active JNKKK that induces high JNK activity and phosphorylation of both endogenous c-Jun and wild-type c-Jun\(^1\)-AspTAP protein (Figure 4A). Probing of the eluate fractions with antibody against RHII/Gu showed that all three c-Jun\(^1\)-AspTAP proteins were expressed and recovered at comparable levels and co-purified with approximately the same amounts of RHII/Gu (Figure 4A, lanes 2–4). This finding indicates that c-Jun phosphorylation does not influence binding to RHII/Gu. However, it does not exclude the possibility that the interaction between the proteins might be regulated by signals that increase the transcriptional activity of c-Jun, in a manner that is not mediated by the c-Jun phosphorylation sites. To test this idea, non-transfected HT-1080 cells were treated with anisomycin and the amount of RHII/Gu in c-Jun co-immunoprecipitates was measured by western blotting. Anisomycin treatment induces potent activation of the JNK pathway and prominent phosphorylation of the immunoprecipitated c-Jun protein (Figure 4B).

Interestingly, more RHII/Gu was co-immunoprecipitated with c-Jun from anisomycin-treated cells, whereas the amount of c-Jun in the immunoprecipitate was identical in treated and control cells. These results suggest that anisomycin-induced signaling regulates the interaction between c-Jun and RHII/Gu. To confirm that this effect is independent of c-Jun phosphorylation, as suggested by the experiment shown in Figure 4A, we tested whether anisomycin treatment would also increase RHII/Gu binding to a c-Jun derivative that lacks the relevant phosphorylation sites. For this purpose, we used a stable HT-1080 cell line expressing the c-Jun\(^1\)-AspTAP fusion protein, and performed TAP purification from untreated or anisomycin-treated cells. As shown in Figure 4C, anisomycin treatment significantly increased binding of endogenous RHII/Gu to c-Jun\(^1\)-AspTAP, but did not cause increased expression of RHII/Gu protein or an elevated recovery of c-Jun\(^1\)-AspTAP in the eluate of the affinity column (Figure 4C).

JNK signaling regulates subnuclear localization of RHII/Gu

The results above show that the stoichiometry of interaction between endogenous c-Jun and RHII/Gu proteins can be increased by cellular signaling that induces JNK activity. As this effect does not depend on c-Jun phosphorylation on the known JNK substrate sites, it is possible that it is mediated by a JNK-induced change in the properties of RHII/Gu. RHII/Gu protein has been reported previously to be a predominantly nucleolar protein. Interestingly, treatment of cells with cytotoxic drugs results in translocation of RHII/Gu from nucleolus to
nucleoplasm (Perlaky et al., 1997). This suggests that RII/II/Gu has both nuclear and nucleoplasmic functions. Thus, we investigated whether JNK activation might also cause accumulation of RII/II/Gu in the nucleoplasm, which would provide an explanation for the JNK-dependent stimulation of c-Jun–RII/II/Gu interaction. We found, in addition to the prevalent nuclear stores, a significant fraction of RII/II/Gu in the nucleoplasm of both 293 and HT-1080 cells. Next, we examined if activation of the JNK pathway might cause an enhanced translocation of RII/II/Gu into the nucleoplasm. To this end, HT-1080 cells were seeded on glass coverslips and, after treatment with anisomycin (5 μg/ml), UVC (20 J/m²) or actinomycin D (0.2 μM) for 1 h, cells were fixed and immunostained with RII/II/Gu antisera. As reported earlier, actinomycin D treatment induced significant translocation of RII/II/Gu from nucleolus to nucleoplasm, resulting in uniform nucleoplasmic staining (Figure 5A). Interestingly, treatment of cells with anisomycin and UVC also increased nucleoplasmic levels of RII/II/Gu (Figure 5A).

Even though anisomycin and UVC treatments have been used as prototypical activators of JNK signaling, they influence multiple cellular processes. In order to study specifically the role of JNK signaling in RII/II/Gu translocation, HT-1080 cells were transfected with RII/II/Gu–green fluorescent protein (GFP) alone or together.
with an expression vector for ΔMEKK1. Activation of JNK signaling by ΔMEKK1 resulted in markedly increased nucleoplasmic staining of RHHI/Gu-GFP (Figure 5B). Taken together, these findings provide evidence that in addition to the well-established function of activating c-Jun by direct phosphorylation, JNK also promotes the translocation of RHHI/Gu from the nucleolus to the nucleoplasm. This mechanism provides a plausible explanation for the observed stimulation of the c-Jun and RHHI/Gu interaction in response to anisomycin-induced JNK signaling.

RHHI/Gu contributes to transcription activation by c-Jun

The observation that RHHI/Gu preferentially interacts with c-Jun in vivo in conditions that coincide with target gene activation raises the possibility that it supports this process. To test this idea, we performed experiments in which HT-1080 cells were microinjected with an expression construct for a c-JunΔerm-estrogen receptor fusion protein (c-JunΔerm) and an AP-1-responsive LacZ reporter construct. In addition, the injected cells received an anti-RHHI/Gu antibody, which blocks helicase activity, or a control antibody. The c-JunΔerm was used for these experiments because it allows a rapid induction of a transcriptionally active c-Jun protein without engaging other signaling pathways. Treatment of c-JunΔerm-expressing cells with 1 μM estradiol, 12 h after injection, significantly increased the fraction of β-galactosidase-positive cells (Figure 6A), indicating that activation of the c-Jun protein stimulated the TRELacZ reporter. Estradiol treatment had no effect on TRELacZ reporter activity in cells that did not express c-JunΔerm (data not shown). Significantly, when the RHHI/Gu neutralizing antibody was co-injected, c-JunΔerm-dependent TRELacZ promoter activation was essentially abolished. The suppressive effect of the RHHI/Gu neutralizing antibody was not due to a general suppression of transcription, as it did not interfere with the activity of an RSVLacZ reporter, which is insensitive to changes in AP-1 activity (Figure 6A). This is strong evidence that the endogenous RHHI/Gu in the injected cells supports transcriptional activation by c-Jun.

The neutralizing RHHI/Gu antibody that interfered with c-Jun-dependent transcription specifically inhibits the RNA helicase activity of RHHI/Gu (Valdez et al., 1997). This suggests that the helicase activity of RHHI/Gu is required for c-Jun-mediated transcriptional activation. To address the role of helicase function of the RHHI/Gu in c-Jun-mediated transcriptional activation more specifically, we generated mammalian expression vectors coding for full-length RHHI/Gu in which either the helicase or the ATPase domain of RHHI/Gu was inactivated by point mutations. We have shown previously that both mutations completely abolish the RNA helicase activity of RHHI/Gu in vitro (Valdez et al., 1997). To study the effects of the mutants on c-Jun-mediated promoter activation, we used

Fig. 6. RNA helicase and ATPase activities of RHHI/Gu contribute to transcription regulation by c-Jun. (A) A RHHI/Gu neutralizing antibody inhibits c-Jun-induced activation of an AP-1 reporter in HT-1080 cells. Subconfluent HT-1080 cells were microinjected with a c-JunΔerm expression construct along with either an AP-1 reporter plasmid (TRELacZ) or a non-AP-1 responsive control reporter (RSVLacZ), and either an affinity-purified human RHHI/Gu neutralizing antibody (αRHHI/Gu) or control human IgG (IgG). At 12 h after injection, cells were treated with 1 μM estradiol (E2) and incubation was continued for 18 h. Thereafter, cells were fixed and stained for β-galactosidase activity. The bar graph represents the percentage of LacZ-positive cells among the injected cells (average ± SD of three independent experiments). **P < 0.02 (Student’s t-test).** (B) The helicase activity of RHHI/Gu is required for stimulation of c-Jun activity. 293 cells were transiently transfected with c-JunGal4 or ElkGal4 expression constructs together with either wild-type (Gwt), helicase mutant (Gu311) or ATPase mutant (Gu312) forms of RHHI/Gu (left and right panels). Subconfluent 293 cells carrying a stably integrated 5×Gal4 reporter construct were transiently transfected with c-JunGal4 expression construct alone or in combination with the either wild-type (Gwt) or ATPase mutant (Gu312) form of RHHI/Gu (middle panel). Luciferase activity in cell lysates was measured 24 h after transfection. Transfection efficiency was monitored by co-transfecting the cells with a UbR-REllia luciferase construct. Shown are mean values ± SD of three or four independent experiments, each in duplicate. **P < 0.05; **P < 0.02 (Student’s t-test). (C) Inhibition of RHHI/Gu activity impairs c-Jun-mediated induction of mRNA expression. 293 cells were transiently transfected with the 5×Gal4 reporter construct, the UbR-REllia expression vector and c-JunGal4 expression construct alone or together with Gu312. After 24 h, cell lysates from parallel samples were prepared and luciferase activity assays were performed along with northern blots to quantitate the abundance of luciferase and Renilla luciferase mRNAs. Equal loading of mRNA was confirmed by ethidium bromide staining of the rRNA.
activity of the 5×UAS luciferase reporter (data not shown) or when the luciferase reporter was activated by Gal4-Elk1, a derivative of a transcription factor that is unrelated to c-Jun (Figure 6B). These results suggest that the helicase activity of RHI/Gu specifically facilitates c-Jun-mediated transcription.

To investigate whether the results of the transfection experiments could be repeated in a chromatin context and were not influenced by the episomal state of the reporter constructs, we expressed c-JunGal4 alone or together with wild-type and the Gu312 mutant of RHI/Gu, in a 293 cell line bearing a genomically integrated 5×UAS luciferase reporter. In these cells, a similar significant suppressive effect of Gu312 on c-JunGal4-induced reporter activation was observed (P-value <0.02, Figure 6B).

In addition to the proposed role of DEAD-box RNA helicases in transcription, some of these enzymes promote mRNA translation (Chuang et al., 1997; Luking et al., 1998; Linder and Dauget, 2000). We wanted to determine whether RHI/Gu might affect reporter expression at the translational rather than the transcriptional level. 293 cells were transfected with the 5×UAS luciferase reporter, along with c-JunGal4 in the absence or presence of the RHI/Gu mutant Gu312, and both luciferase activity and luciferase mRNA expression were determined from parallel samples. As before, Gu312 inhibited c-JunGal4-dependent induction of luciferase activity (Figure 6B). Furthermore, Gu312 expression significantly (by 75%) decreased the abundance of luciferase mRNA as measured by northern blots (Figure 6C), indicating that helicase activity of RHI/Gu is involved in the transcriptional regulation of gene expression. In accordance with previous experiments, inhibition of helicase activity of RHI/Gu did not have any non-specific inhibitory effect on the expression of ubiquitin promoter-driven Renilla luciferase mRNA, which was transcribed from an internal control vector (Figure 6C).

RHI/Gu promotes c-Jun-mediated neuronal differentiation of PC12 cells

We wanted to study whether RHI/Gu is required for regulation of complex cellular programs induced by c-Jun. c-Jun potently induces neuronal differentiation of PC12 cells (Leppä et al., 2001). To study whether RHI/Gu activity is involved in this differentiation function, we performed an experiment in which PC12 cells were microinjected with an expression vector for hemagglutinin (HA) epitope-tagged c-Jun together with either a control antibody or a neutralizing antibody against RHI/Gu. At 48 h after injection, the effect of the RHI/Gu antibody on c-Jun-mediated neuronal differentiation of the PC12 cells was measured. Injection of PC12 cells with control antibody alone did not have any effect on the cell phenotype, whereas prominent neurite outgrowth was observed in cells injected with c-Jun expression construct together with control antibody (Figure 7A). Remarkably, injection of the RHI/Gu neutralizing antibody strongly decreased c-Jun-induced neurite outgrowth, showing that RHI/Gu activity is required for induction of the neuronal differentiation program initiated by c-Jun in these cells (Figure 7A and B). Importantly, comparable numbers of HA epitope-positive cells were observed in both groups of cells (data not shown), indicating that the RHI/Gu

![Image](https://example.com/image.png)
antibody did not have adverse effects on the survival of injected PC12 cells. These results provide further evidence in support of a contribution of endogenous RII/Gu to c-Jun-mediated cellular processes and imply that RII/Gu supports the activation of endogenous c-Jun target genes, in addition to synthetic reporter genes.

Discussion

Many fundamental functions of the eukaryotic cell such as transcription initiation, splicing, replication and DNA repair are catalyzed by multiprotein complexes consisting of many dozens of subunits with enzymatic as well as regulatory functions (Hirose and Manley, 2000; Lemon and Tjian, 2000). To learn more about the biology of these processes and the multiprotein complexes involved, the identification of their subunits and the characterization of their interactions is essential. The data presented here document how the TAP technology that was developed initially to characterize protein interactions in yeast can be adapted successfully for transiently and stably transfected mammalian tissue culture systems. Based on its generic nature (Rigaut et al., 1999; Puig et al., 2001), this method should be widely applicable to the identification and characterization of known or suspected protein–protein interactions in higher eukaryotic cells.

We have identified a group of proteins that bind to c-Jun and provide evidence that the DEAD-box RNA helicase RII/Gu is a novel transcriptional co-activator of c-Jun. Several of the other proteins identified as c-Jun interaction partners have established or supposed roles in the transcriptional regulation of gene expression, making it plausible that we have identified a set of proteins that facilitate c-Jun-mediated promoter activation and mRNA synthesis.

The data presented in this study indicate that the RNA helicase activity of RII/Gu is involved specifically in the stimulation of c-Jun-mediated reporter activation and for activation of endogenous c-Jun targets during PC12 cell neuronal differentiation. The fact that the substrate specificity of RII/Gu is limited to RNA–RNA and RNA–DNA duplexes suggests that it acts at a step of transcription different from DNA helicases such as NDHII (Nakajima et al., 1997; Eisen and Lucchesi, 1998). Based on our reporter gene assays, the RNA helicase activity of RII/Gu facilitates efficient mRNA synthesis but, in contrast to other RNA helicases such as cIF-4A and the yeast RNA helicase Ded1p (Chuang et al., 1997; Linder and Daugeron, 2000), it appears not to be involved in translational regulation of gene expression. In addition, since the reporter genes used in this study do not contain introns, it is evident that the stimulatory effect of RII/Gu on their expression cannot be explained by effects at the level of pre-mRNA splicing as has been shown for yeast DEAD-box PRP proteins (Luking et al., 1998). Furthermore, the finding that overexpression of mutant forms of RII/Gu equally potently suppressed c-Jun-mediated transcriptional activation in both an episomal and a chromatin context suggests that RII/Gu is not involved in chromatin decondensation.

The mechanism by which RII/Gu participates in c-Jun-stimulated mRNA synthesis remains a matter of speculation at this point. Interestingly, it was shown recently that the vaccinia virus DEXD/H protein NPH-II can displace protein from RNA (Jankowsky et al., 2001). This might suggest an additional mechanism to explain how these proteins could influence gene transcription, for example by facilitating promoter clearance. Further conceivable possibilities for a role of RII/Gu in support of c-Jun include assisting in the packaging of the RNA into hnRNPs or even a function in transcription-coupled DNA repair or the removal of a stalled polymerase from damaged templates.

Our data show that the binding of RII/Gu to c-Jun increases in response to anisomycin treatment by a c-Jun phosphorylation-independent mechanism. This observation could be explained by the JNK-regulated translocation of RII/Gu from nucleoli to nucleoplasm. Such a model would not be without precedent. In addition to being a site for rRNA synthesis and assembly, the nucleolus is now recognized as a store for proteins with latent nucleoplasmic functions (e.g. Mdm2; Visintin and Amon, 2000). It has been established that nucleolar proteins may shuttle continuously between nucleolus and nucleoplasm (Phair and Misteli, 2000). Interestingly, the C-terminal domain of RII/Gu that binds to c-Jun also serves as a nucleolar localization signal for RII/Gu (Ou et al., 1999), indicating that the interaction between RII/Gu and c-Jun might prevent relocalization of RII/Gu to the nucleolus.

A final point of note is that both c-Jun and RII/Gu have been shown to be necessary for cell growth and/or survival (Ou et al., 1999; Davis, 2000). These findings indicate that the interaction between RII/Gu and c-Jun might be required for the regulation of c-Jun target genes important for cell cycle progression. Further studies will be required to elucidate a potential function of interaction between c-Jun and RII/Gu in cell growth and transformation.

Materials and methods

Plasmids and construction of expression vectors

Bacterial expression plasmids for HA-tagged c-Jun (Treier et al., 1994), mammalian HA-tagged c-Junapo (Treier et al., 1995), constitutively active AMEKK1 (Whitmarsh et al., 1995), GST–RII/Gu fusion proteins (Valdez et al., 1996) and reporter plasmids RSVLacZ and TRELacZ (Yeung et al., 1999) have been described. Information about cloning of the mammalian expression constructs for RII/Gu mutants JunapoER and c-Jun–225TAP is available on request.

TAP purification

For TAP purification experiments, subconfluent 293 cells were transiently transfected by the calcium phosphate method with 5 µg of CMVJunoTAP constructs, 2 µg of AMEKK1 or 7 µg of empty cytomegalovirus (CMV)-driven expression construct per 10 cm plate. c-JunTAP complexes were purified using a published procedure (Rigaut et al., 1999; Puig et al., 2001) with minor modifications. High salt nuclear extractions from mock- or Jun–225TAP-transfected cells were prepared as described (Andrews and Faller, 1991) and subsequently adjusted to IgG-binding conditions: 180 mM NaCl, 10 mM Tris–HCl pH 8.0, 0.2% NP-40, 0.5 mM dithiothreitol (DTT), complete protein inhibitors (Roche), 10 mM β-glycerophosphate and 20 mM NaF. Diluted extracts were rotated overnight at 4°C with 100 µl of IgG matrix (Amersham Biotech), after which the beads were washed extensively in binding buffer. Washed beads were resuspended in TEV cleavage buffer (10 mM Tris–HCl pH 8.0, 0.5% NP-40, 0.5 mM EDTA, 0.5 mM DTT) and 5–15 µl of recombinant TEV enzyme (150 U; Life Technologies) was added to the mixture. After rotation for 2 h at 16°C, the TEV eluate from the IgG column was recovered and adjusted to calmodulin-binding conditions: 45 mM Tris–HCl pH 8.0, 150 mM NaCl, 0.7 mM Mg- acetate, 0.7 mM imidazole, 2.5 mM CaCl2, 0.2% NP-40, 10 mM.
β-mercaptoethanol, and rotated for 2 h at 4°C with 50 µl of calmodulin affinity resin (Stratagene). After binding, sedimented beads were washed extensively with calmodulin-binding buffer. Bound proteins were recovered by boiling the calmodulin beads for 3 min in protein sample buffer and loaded onto a preparative 12% SDS–polyacrylamide gel. Proteins were detected by silver staining (Shchevchenko et al., 1996).

Peptide sequences of c-Jun-specific interaction partners were identified as described previously (Bouweret et al., 2000) except that a Q-Tof mass spectrometer (Micromass) was used for peptide sequencing by tandem mass spectrometry. Protein bands were excised from the silver-stained gel, reduced, alkylated and digested overnight with trypsin, and peptide sequences were obtained by nano-electrospray tandem mass spectrometry and by comparison with a comprehensive non-redundant protein database using the program PeptideSearch.

For western blot analysis, aliquots of nuclear proteins or TEV eluates after IgG affinity purification and TEV cleavage were loaded onto 12% SDS–polyacrylamide gels and transferred to nitrocellulose membrane.

GST pull-down experiments

Pull-down assays with purified JunHis, a histidine-tagged recombinant full-length c-Jun, were performed by incubating 1 µg of soluble JunHis, protein with either 20 µl of GST–cJun deletions immobilized on glutathione–Sepharose beads in 0.5 ml of buffer containing 20 mM Tris–HCl pH 7.4, 0.2 mM EDTA, 0.1 M NaCl and 1 mM DTT. In experiments in which nuclear proteins containing c-Jun were used, nuclear proteins were prepared from 293 cells (Anders and Fuller, 1991), adjusted to the binding conditions described above. In experiments in which ethdium bromide, RNAse A or higher concentrations of NaCl were used, these reagents were added to the binding reaction prior to addition of the recombinant proteins. Bound proteins were boiled in sample buffer, resolved by SDS–PAGE and immunoblotted with anti-GST and anti-c-Jun antibodies.

Co-immunoprecipitations and DNA affinity purification assay

Protein G–Sepharose (Pharmacia) beads were agitated on a tumbler for 2 h at 4°C with c-Jun antisera or with rabbit pre-immune serum in 20 mM HEPE–KOH pH 7.5, 400 mM NaCl, 0.25 mM EGTA, 1.5 mM MgCl₂, 0.25% NP-40, protease inhibitors (Roche), 10 mM β-glycerophosphate, 20 mM NaF and 0.5 mM DTT. Before co-immunoprecipitation, 293 and HT-1080 nuclear extracts were sonicated and pre-cleared for 2 h at 4°C with rabbit pre-immune serum immobilized to protein G–Sepharose (Pharmacia) beads, and supernatants from the pre-cleared samples were incubated with immobilized c-Jun antisemur or control rabbit pre-immune serum. After incubation, sedimented beads were washed four times with 50 mM Tris–HCl pH 7.4, 150 mM NaCl, 0.3% NP-40 and 0.5 mM DTT, and bound proteins were analyzed by western blotting using mouse anti-c-Jun or human anti-RHII/Gu antibodies. For the DNA affinity purification assay, HT-1080 cells were lysed in RIPA buffer (50 mM Tris–HCl pH 7.4, 150 mM NaCl, 1% NP-40, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride (PMSF), protease inhibitors (Roche), 10 mM β-glycerophosphate, 20 mM NaF, 0.5 mM DTT). The cell lysates were then sonicated and incubated with 3 µg of bniotylated double-stranded oligonucleotides at 4°C for 3 h. Oligonucleotide–protein complexes were recovered using streptavidin-conjugated magnetic beads (Dynal) and washed extensively. The following double-stranded oligonucleotides containing either wild-type or mutated AP-1–binding sites (underlined) were used: (AP-1wt) 5'-biotinTAAAGCATGAGTCAGAACCTCTG-3' or (AP-1mut) 5'-biotinTAAAGACGGCCTACGACACCTCTG-3'.

Proteins bound to DNA were resolved by SDS–PAGE and analyzed by western blotting using c-Jun and RHII/Gu antibodies.

Microinjection reporter assays

HT-1080 cells were seeded on CELLocate coverslips (Eppendorf) to facilitate identification of control IgG and RHII/Gu neutralizing antibody–infected cells after staining. A total of 100–150 cells were co-infected with the Jun**ER** expression construct (100 µg/ml) and TRELaZ reporter construct (200 µg/ml) or with RVSVLaZ.W (5 µg) together with 90 ng/ml of either purified human IgG or affinity-purified human RHII/Gu neutralizing antibody (Valdez et al., 1996, 1997). At 12 h after microinjection, cells were treated with 1 µM estradiol and incubation was continued for 18 h. Cells were washed thereafter with PBS, fixed with 2% paraformaldehyde (PFA) and LaZ stained as described previously (Rose et al., 1999). Cells were inspected by light microscopy and the injected cells that exhibit blue staining were counted as positive.

PC12 cell differentiation assay

PC12 cells were microinjected and stained as described previously (Leppä et al., 2001). Briefly, 100–150 PC12 cells were injected with CMV HAc-Jun**ER** expression construct (Trelles et al., 1995) together with 90 ng/ml of purified human IgG or affinity-purified human RHII/Gu neutralizing antibody (Valdez et al., 1997). Control cells were injected with purified human IgG together with fluorescein isothiocyanate (FITC)–labeled dextran (Molecular Probes). At 48 h after injection, cells were fixed with 2% PFA, and nuclear expression of HAc-Jun**ER** was visualized by staining of cells with a monoclonal anti-HA antibody (Roche) and FITC-conjugated secondary antibody (Dianova). The morphology of cells was visualized using tetramethylrhodamine isothiocyanate (TRITC)–labeled phalloidin (Sigma). For visualization of the cells and quantification of neurite outgrowth, mounted samples were examined using a Zeiss LSM410 confocal imaging system.

Acknowledgements

We thank Dr F.Stewart, Dr D.Rose and Dr R.Davis for providing the cDNA encoding the estrogen receptor-binding domain, the TRELaZ reporter and AMEKK1 expression constructs, respectively; Dr F.Grosse and Dr J.-P.Fuchs for providing us with the NDHII and hnRNP M antibodies, respectively; Dr S.Leppä for advice on PC12 differentiation assays; and members of our laboratory, especially U.Gritzan, J.Brennecke and M.Bonoli, for their technical help and suggestions. This work was supported by the Academy of Finland (project 5/43019), Culture Foundation of Finland and Astra-Zeneca (J.W.), P.F. Biotecnologie-CNR-Italy (A.-M.M.), and the National Institutes of Health Grant DK52341 (B.C.V.).

References

Received May 2, 2001; revised November 16, 2001; accepted November 29, 2001