The mechanism of phosphorylation-inducible activation of the ETS-domain transcription factor Elk-1

Shen-Hsi Yang1,2, Paul Shore1,2, Nicola Willingham1, Jeremy H.Lakey1 and Andrew D.Sharrocks1,2,3

1Department of Biochemistry and Genetics, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
2Present address: School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
3Corresponding author e-mail: a.d.sharrocks@man.ac.uk

Protein phosphorylation represents one of the major mechanisms for transcription factor activation. Here we demonstrate a molecular mechanism by which phosphorylation by mitogen-activated protein (MAP) kinases leads to changes in transcription factor activity. MAP kinases stimulate DNA binding and transcriptional activation mediated by the mammalian ETS-domain transcription factor Elk-1. Phosphorylation of the C-terminal transcriptional activation domain induces a conformational change in Elk-1, which accompanies the stimulation of DNA binding. C-terminal phosphorylation is coupled to activation of DNA binding by the N-terminal DNA-binding domain via an additional intermediary domain. Activation of DNA binding is mediated by an allosteric mechanism involving the key phosphoacceptor residues. Together, these results provide a molecular model for how phosphorylation induces changes in Elk-1 activity. Keywords: conformational change/Elk-1/ETS-domain/phosphorylation/transcription factor

Introduction

Eukaryotic transcription factors typically consist of functionally separable domains for directing DNA binding and transcriptional activation or repression. All these activities are often tightly regulated by post-translational modification and/or ligand binding (Hunter and Karin, 1992; Hill and Treisman, 1995; Mangelsdorf and Evans, 1995; Treisman, 1996). Recently, the concept of transcription factor modularity has been challenged by the observation that DNA can act as an allosteric activator (Lefstin and Yamamoto, 1998). Similarly, DNA binding can allosterically induce conformational changes in the ETS-domain family member Ets-1 (Petersen et al., 1995; Jonsen et al., 1996). Hence, an understanding of how transcription factors are activated within their natural context, rather than as isolated domains, is of key importance.

DNA binding and transcriptional activation by several members of the ETS-domain transcription factor family are subject to autoinhibitory regulation (Sharrocks et al., 1997; Graves and Petersen, 1998). In the best studied example, Ets-1, DNA-binding inhibition is mediated by cooperatively acting N- and C-terminal inhibitory motifs that act to suppress DNA binding by the ETS-domain (Jonsen et al., 1996). Activation of DNA binding is accompanied by a structural change in these motifs, but to date the activating trigger is unknown (Petersen et al., 1995). A member of the ternary complex factor (TCF) subfamily of ETS-domain proteins, Elk-1, is activated following phosphorylation by mitogen-activated protein kinases (MAPKs) (Cavigelli et al., 1995; Gille et al., 1995; Price et al., 1996; Whitmarsh et al., 1997; reviewed in Treisman, 1996; Yang et al., 1998c). Similarly, the other TCFs, SAP-1 and SAP-2, are activated by MAPKs (reviewed in Yang et al., 1998c). Phosphorylation takes place at multiple sites in the C-terminal TAD and results in enhancement of both DNA binding and transcriptional activation mediated by Elk-1 (Cavigelli et al., 1995; Gille et al., 1995; Sharrocks, 1995; Whitmarsh et al., 1995; Shore et al., 1996; reviewed in Treisman, 1994; Yang et al., 1998c). Furthermore, upon phosphorylation of Elk-1, DNA-bound complexes exhibit a change in mobility that is suggestive of a conformational change in the complex (Marais et al., 1993; Shore et al., 1996). Part of this mobility change may be due to a change in the structure of the DNA in the ternary complex (Sharrocks and Shore, 1995). Two additional Elk-1 domains, the B-box and D-domain, are located between the ETS DNA-binding domain and TAD, and act as protein–protein interaction motifs for serum response factor (SRF) and MAPKs, respectively (Shore and Sharrocks, 1994; Yang et al., 1998a,b). In the context of C-terminally truncated proteins, the B-box also appears to act as a DNA-binding inhibitory motif (Dalton and Treisman, 1992; Janknecht et al., 1994). A model has been proposed in which Elk-1 exists in two conformations (Treisman et al., 1992; Sharrocks, 1995). In the ‘closed’ conformation, Elk-1 is unable to bind DNA efficiently. Either phosphorylation of the Elk-1 TAD or SRF binding to the B-box is then thought to convert Elk-1 to an open conformation that can efficiently bind DNA in both binary and ternary complexes.

In this study, we provide evidence to support several key features of this model and new insights into the mechanism of phosphorylation-inducible activation of...
Elk-1. We have investigated how C-terminal phosphorylation of Elk-1 leads to activation of DNA binding by the N-terminal ETS-domain and demonstrate that allosteric activation with concomitant conformational changes takes place. Thus, although the DNA-binding domain and TAD act as discrete modules, structural coupling is required for phosphorylation-inducible activation of Elk-1.

Results

The Elk-1 B-box plays a key role in phosphorylation-inducible relief of DNA binding inhibition

DNA binding by Elk-1 is inhibited by an intramolecular mechanism involving residues located C-terminally to the ETS-domain (Janknecht et al., 1994). C-terminal deletion analysis suggests that the Elk-1 B-box represents a DNA-binding inhibitory region (Janknecht et al., 1994). In order to investigate this phenomenon further, the DNA-binding activity of the C-terminally truncated Elk-1 protein Elk1–168 (comprising the ETS-domain and the B-box region; Figure 1A) was determined in the presence of increasing amounts of peptides corresponding to the Elk-1 B-box (Ling et al., 1997) or D-domain (Yang et al., 1998b). The asterisk represents complexes derived from C-terminal degradation products. (C) and (D) Gel-retardation analysis of wild-type and mutant Elk-1 derivatives with deletions of the B-box (C) or point mutations in the B-box (D) binding to the E74 site. Prior phosphorylation of Elk-1 by ERK2 is indicated (P).

Collectively, these results demonstrate that the B-box plays a role in inhibiting DNA binding in the context of truncated Elk-1 proteins and is required for the induction of DNA binding following Elk-1 phosphorylation.

Elk-1 undergoes a phosphorylation-inducible conformational change

The mechanism by which phosphorylation induces DNA binding by Elk-1 is unknown, although one attractive mechanism would be to induce a conformational change that unmask or alters the DNA binding surface of Elk-1. Indeed, upon phosphorylation of Elk-1, DNA-bound complexes exhibit a change in mobility that is suggestive of a conformational change in the complex (Marais et al., 1993; Shore et al., 1996). To probe for conformational changes within the protein following phosphorylation, C-terminally Flag-epitope-tagged Elk-1 was phosphorylated in vitro by ERK2 and subjected to limited proteolytic digestion (Figure 2A, B and C). Of the

regulatory domain, internal deletions and point mutations were introduced into Elk-1 (Figure 1A). Proteins were phosphorylated to equivalent levels (monitored by 32P incorporation and detection of phosphorylated Ser383 residues by Western blotting; S.-H. Yang and A.D. Sharrocks, data not shown) and tested for binding to the E74 site. Phosphorylation of Elk-1 by MAPKs results in an increase in its DNA binding activity (Figure 1C, lanes 1 and 2). However, deletion of the B-box blocks the activation of DNA binding by Elk-1 following phosphorylation (Figure 1C, lanes 3 and 4). Similarly, the introduction of a proline residue into the B-box blocks the activation of DNA binding by Elk-1 following phosphorylation (Figure 1D, lanes 5 and 6). Other mutations in the B-box have little effect on this activation process (Figure 1D, lanes 3 and 4; data not shown).

Collectively, these results demonstrate that the B-box plays a role in inhibiting DNA binding in the context of truncated Elk-1 proteins and is required for the induction of DNA binding following Elk-1 phosphorylation.
Fig. 2. Phosphorylation of Elk-1 induces a change in the tryptic cleavage pattern of Elk-1. (A and C) Western blot analysis of phosphorylated and non-phosphorylated Elk-1 following partial proteolytic digestion with trypsin, in which times of either digestion (A) or phosphorylation of Elk-1 (C) were varied. C-terminally Flag-tagged fragments were detected with an anti-Flag antibody. The locations of the major proteolytic cleavage sites in Elk-1 are indicated.

(B) Graph of the relative mobilities of the five major proteolytic fragments derived from phosphorylated Elk-1, plotted against the mobilities of the five major proteolytic fragments derived from non-phosphorylated Elk-1. The identities of the bands contributing to the points on the graph are indicated. (D) Western blot analysis, using anti-Flag antibodies, of phosphorylated (lanes 9–16) and non-phosphorylated (lanes 1–8) wild-type and mutant Elk-1 (L158P) following partial proteolytic digestion with trypsin for the indicated times. Bands resulting from enhanced cleavage of phosphorylated Elk-1 in the L158P mutant are indicated by an arrow. The band labelled with an asterisk was not resolved from band 2 in (A) and (C). Band 6 is not present on these gels. Proteolytic fragments were separated on SDS–PAGE using either standard 12% acrylamide (A and C) or 10% Proieve™ acrylamide (D). (E) Locations of constitutive (below) and variable (above) proteolytic cleavage sites in wild-type Elk-1. Sites present in the non-phosphorylated protein (N), or induced by phosphorylation (P), are indicated.

proteases tested, only trypsin produced a good ladder of fragments (S.-H.Yang and P.Shore, data not shown). Preliminary experiments demonstrated that generation of the tryptic ladder was dependent on the addition of trypsin rather than a contaminating protease (S.-H.Yang and P.Shore, data not shown). Five major bands are detected in the tryptic digests of both phosphorylated and non-phosphorylated Elk-1 by Western blotting with an anti-Flag antibody (Figure 2A). A summary is shown in Figure 2E where sites are assigned based on the relative mobilities of the C-terminally Flag-tagged fragments and the presence of a tryptic cleavage site in the sequence. Following phosphorylation, a general reduction in the mobility of all the C-terminal fragments is observed. However, the relative mobilities of four of these bands remain unchanged, but significantly, one major band is lost (band 5) and a new one is gained (band 4) (Figure 2A and B). The phosphorylation-inducible shift in the mobilities of the bands is better visualized over a time course (Figure 2C). Initially, the mobility of band 5 is reduced in an analogous manner to the other bands following phosphorylation (Figure 2C, lanes 2–4). A further shift is then observed in this band upon increased phosphorylation, whereas no further changes are observed in the other bands (Figure 2C, lanes 4–6). An additional minor cleavage product is also induced upon phosphorylation (band 7) (Figure 2A). Although it is possible that a band might be lost due to a phosphate group interfering with trypsin cleavage, the appearance of an additional band cannot be attributed to this effect. The changes we observe are, therefore, most likely interpreted as demonstrating a conformational change in the protein upon phosphorylation.

The proteolytic digestion products generated by trypsin cleavage of Elk-1 were also analyzed by gel-retardation analysis using the E74 site. In this case, all fragments contain the N-terminal ETS DNA-binding domain and additional C-terminal sequences. Elk-1 is partially phosphorylated after 5 min, but fully phosphorylated after 60 min (Yang et al., 1998a; S.-H.Yang and A.D.Sharrocks, data not shown). Several cleavage products are observed in both the phosphorylated and non-phosphorylated protein. However, a new cleavage product (band A) is produced following phosphorylation of Elk-1 (Figure 3A, lane 6). This novel band is only detected at high levels of phosphorylation required for maximal stimulation of DNA binding (see Figure 3A, lanes 1–3), thereby providing a clear link between the stimulation of DNA binding and a conformational change in Elk-1. The location of this inducible site towards the N-terminus of the protein (Figure 3B), far away from the phosphoacceptor motifs, is indicative of a phosphorylation-inducible conformational change being transduced from the C- to the N-terminal end of Elk-1.

As the mutant protein Elk-1(L158P) is defective in the phosphorylation-inducible activation process (Figure 1D), it is possible that the conformational change induced following phosphorylation is also disrupted. Partial proteolysis experiments demonstrate that although the unphosphorylated Elk-1(WT) and Elk-1(L158P) proteins exhibit similar cleavage patterns (Figure 2D, lanes 1–8), a series of hypersensitive cleavage sites occur in the phosphorylated Elk-1(L158P) protein (Figure 2D, lanes 13–16).

Collectively, these results demonstrate that a change in the proteolytic cleavage pattern of Elk-1 occurs following phosphorylation, which most likely reflects a conformational change in the protein. This conformational change
Mechanism of Elk-1 activation

Mechanism of Elk-1 activation

Fig. 3. Analysis of phosphorylation-inducible tryptic digestion products of Elk-1 by gel-retardation analysis. (A) Gel-retardation analysis of phosphorylated and non-phosphorylated Elk-1 following partial proteolytic digestion with trypsin. Elk-1 was phosphorylated with ERK2 for the indicated times (0–60 min). Bands represent C-terminally truncated fragments that retain the intact N-terminal ETS DNA-binding domain. Constitutive cleavage products are asterisked. (B) Location of the phosphorylation-inducible proteolytic cleavage site in wild-type Elk-1. A novel cleavage site induced in the phosphorylated protein (P) is indicated. The location of this site was estimated based on the fact that the complex mobility of this Elk-1 fragment is less than Elk1–168 (which contains the B-box), but much greater than the ETS-domain alone (S.-H.Yang, data not shown).

appears to be partially defective in the mutant protein Elk-1(L158P).

To further establish that these proteolytic changes reflect a conformational change in Elk-1, circular dichroism (CD) and fluorescence emission spectroscopy were employed (Figure 4). In the wild-type protein, phosphorylation causes a shift in both its CD spectrum, indicating an increase in α-helicity, and in its fluorescence emission spectrum, indicating a change in the environment of tryptophan residues. In contrast, little change is observed in the fluorescence emission spectrum of the isolated C-terminal TAD containing glutathione S-transferase (GST)–Elk-310 upon phosphorylation (S.-H.Yang and A.D.Sharrocks, data not shown). Elk-1 contains four Trp residues; three in the ETS-domain and one close to the key phosphoacceptor motifs (Ser383 and Ser389) in the TAD (Figure 6A); therefore, C-terminal phosphorylation of Elk-1 causes a change in intramolecular interactions with either the ETS-domain or the C-terminal activation domain.

The mutant protein Elk-1(L158P) was also analysed by CD and fluorescence emission spectroscopy. Although an increase in α-helicity can still be observed using CD (compare Figure 4A and B), little change in the fluorescence emission spectrum is detected following phosphorylation (Figure 4D). Thus, whilst secondary structure changes can still be observed, the tertiary structural changes induced by phosphorylation of Elk-1 are lost in the Elk-1(L158P) mutant protein.

Together, these results therefore demonstrate that a significant conformational change is induced in both the secondary and tertiary structure of Elk-1 following phosphorylation. However, the phosphorylation-induced structural change in the mutant protein Elk-1(L158P) is partially defective.

Regulation of Elk-1 DNA binding by phosphorylation-regulatable effector peptides

Phosphorylation of the Elk-1 TAD plays a pivotal role in the activation of its DNA binding activity. Furthermore, the C-terminal TAD appears sufficient to inhibit DNA binding in the absence of the B-box (Figure 1). To investigate how the inhibition and activation of DNA binding by the C-domain occur in response to phosphorylation, DNA binding experiments were carried out in the presence of phosphorylated (+P) and non-phosphorylated (−P) peptides from the C-domain that encompass the key phosphoacceptor motifs Ser383/Ser389 (Figure 5A). Significantly, the non-phosphorylated peptide inhibits, whereas the phosphorylated peptide slightly enhances, DNA binding by phosphorylated Elk-1 (Figure 5B). In contrast, neither peptide affects DNA binding by non-phosphorylated Elk-1 (Figure 5C). Moreover, a different peptide corresponding to the Elk-1 D-domain does not alter the efficiency of DNA binding by phosphorylated Elk-1 (Figure 5D). The inhibitory activity of the C-domain peptides is therefore specific, regulatable by phosphorylation and directed towards the phosphorylated form of Elk-1.

In order to analyse whether the peptides act as allosteric
Inhibition of DNA binding occurs by an allosteric mechanism. Gel-retardation analysis of phosphorylated full-length Elk-1, non-phosphorylated Elk-1 or Elk1–93 binding to the E74 site in the absence or presence of increasing amounts of phosphorylated (+P) and non-phosphorylated (–P) C-domain peptides (lanes 1 and 7, 70 μM; lanes 2 and 6, 7 μM; lane 3, 350 μM). Gel-retardation analysis of phosphorylated full-length Elk-1 in the presence of increasing amounts of D-domain peptide.

Intramolecular interactions in Elk-1
A molecular model emerges for how DNA binding by Elk-1 is regulated by phosphorylation (Figure 7; see Discussion). Phosphorylation at the C terminus of the protein triggers a structural change in the protein that results in the activation of DNA binding by the N-terminal ETS-domain. An additional domain (the B-box) appears to be involved in both the inhibition process and coupling of the C-terminal phosphorylation event with the activation process. In order to demonstrate direct structural coupling between the C-terminal end and the N-terminal ETS DNA-binding domain of Elk-1, GST pull-down experiments were carried out. Both Elk1–93 and Elk1–168 (containing the ETS DNA-binding domain) bind to GST–Elk310 (containing the Elk-1 TAD). Phosphorylation of GST–Elk310 reduces binding to Elk1–93, but enhances binding to Elk1–168 (Figure 6B), indicating a shift in the interactions of the C- and N-terminal regions. As the B-box
Mechanism of Elk-1 activation

The intact C-terminal TAD can bind to the N-terminal part of the protein (Figure 6B). In order to identify the part of Elk-1 to which the effector peptides bind, the interaction of C- and N-terminally truncated Elk-1 proteins with GST–Elk(375–399) was investigated. However, no reproducible binding could be observed to these truncated Elk-1 proteins (data not shown), indicating that the peptides bind to an epitope that is only present in full-length Elk-1.

Together, these results demonstrate that, consistent with our model, both the B-box and Elk-1 TAD can interact directly with the ETS DNA-binding domain. These interactions appear to be modified by phosphorylation, which correlates with the activation of DNA binding and conformational changes induced in the protein. Similarly, a short peptide surrounding the phosphoacceptor motifs is sufficient for binding to Elk-1 in a phosphorylation-dependent manner, although binding is also dependent upon the integrity of the protein.

Discussion

Eukaryotic transcription factors are usually modular in design and consist of functionally separable domains for directing DNA binding, and transcriptional activation or repression. The latter two types of activity are often associated with protein–protein interactions leading to the recruitment of co-activator or co-repressor proteins. It is becoming apparent that these ‘independent’ domains are actually intimately interlinked rather than functioning in isolation (reviewed in Lefstin and Yamamoto, 1998). In this study, we demonstrate that phosphorylation signals received at the C-terminal end of Elk-1 are transmitted via an intermediary domain to permit activation of DNA binding by the N-terminal ETS DNA-binding domain. This phosphorylation-dependent switch is accompanied by conformational changes in the protein and results in a change in the intramolecular interactions between the different domains in Elk-1.

Mechanism of phosphorylation-inducible activation of DNA binding by Elk-1

Phosphorylation of Elk-1 regulates both its DNA-binding activity and transcriptional activation properties (reviewed...
in the unphosphorylated state, DNA binding by Elk-1 is inhibited by a combination of the B-box and C-terminal TAD (Figure 7A). Evidence to implicate these two regions is provided in this (Figure 1) and a previous study (Janknecht et al., 1994). A regulatory region is located in the TAD, which encompasses the key phosphoacceptor motifs (Ser383/Ser389) and acts as a phosphorylation-inducible switch which controls DNA binding. Phosphorylation initiates both a local change in the intramolecular interactions (see Figure 6) and a complex conformational change in the whole protein that relieves the inhibitory interactions (Figure 6B; see Figures 2, 3 and 4). The addition of inhibitory peptides can then reverse this activation process by binding to phosphorylated Elk-1 and acting as a phosphorylation-regulatable allosteric switch (Figure 6B; see Figure 5). These peptides are, however, unable to gain access to the unphosphorylated protein due to its ‘closed’ conformation.

Although we and others (Gille et al., 1995) have demonstrated that phosphorylation of Ser383/Ser389 is a key regulatory event in DNA binding, it is clear that the overall stoichiometry of phosphorylation is important in inducing both DNA binding and conformational changes in Elk-1. Other phosphoacceptor motifs are, therefore, likely to play a role in this process. First, high levels of phosphorylation are required to gain maximal DNA binding (Yang et al., 1998a; Figure 3A) and induce structural changes in Elk-1 (Figure 2C). Under the conditions we used, Elk-1 is maximally phosphorylated after 60 min, at which point maximal stimulation of DNA binding and conformational changes are observed. Secondly, Elk-1(S383A/S389A) can still undergo a phosphorylation-inducible conformational change, as detectable by partial proteolysis (S.-H. Yang and A.D. Sharrocks, data not shown), although further differences in the digestion patterns indicate that the conformational change is defective. This scenario is very similar to that detected for the B-box mutant L158P (Figure 1E), indicating that multiple determinants act to determine the precise conformational change that is induced by phosphorylation.

Multiple roles of the Elk-1 B-box
Deletion analysis (Janknecht et al., 1994) and peptide competition experiments (Figure 1B) indicate that the B-box acts as an inhibitory motif in the context of a truncated Elk-1 protein. However, a comprehensive mutagenic study of the B-box did not identify any amino acids whose mutation caused a stimulation of DNA binding (Ling et al., 1997). Furthermore, although the insertion of a proline residue into the B-box was shown to disrupt its propensity for α-helix formation and abolish interactions with SRF, no stimulation of DNA binding was observed (Ling et al., 1997; S.-H. Yang and A.D. Sharrocks, data not shown). In the context of the full-length protein, an internal deletion of the B-box does not cause a complete loss of DNA binding inhibition, as might be predicted from previous studies (Figure 1). This indicates that the C-terminal TAD is sufficient to inhibit DNA binding. Together, these results therefore suggest that in the context of truncated proteins, the inhibitory effect of the B-box might be non-specific and be driven by the requirement to exclude the hydrophobic residues in the B-box from the solvent. However, in the context of the full-length protein, the B-box clearly plays a role in the inhibitory process. First, the B-box binds to the ETS-domain (Figure 6C) and is also involved in interactions with the phosphorylated TAD (Figure 6B). Secondly, deletion or mutation of the B-box disrupts the ability of C-terminal phosphorylation to stimulate DNA binding (Figure 1C and D). Thirdly, the phosphorylation-inducible conformational change is partially disrupted when the B-box is mutated in the Elk-1(L158P) protein (Figures 2D and 4).

Hence, the B-box plays a key role in coupling C-terminal phosphorylation signals with the enhancement of DNA binding via the N-terminal ETS-domain. In addition, the B-box has also been shown to bind to SRF (Shore and Sharrocks, 1994). Therefore, the Elk-1 B-box plays a pivotal role in the formation of the ternary Elk-1–SRF–SRE complex. As phosphorylation stimulates ternary complex formation as well as autonomous DNA binding (Gille et al., 1995; Sharrocks, 1995), the conformational change might be expected to unmask the B-box for interaction with SRF. However, this does not seem to be the case as protein–protein interactions with SRF are not stimulated by phosphorylation (Figure 6D). Thus, the major effect of phosphorylation on ternary complex formation is in stimulating protein–DNA interactions.

Comparison with other DNA binding inhibitory mechanisms
As observed with Elk-1, DNA binding by SAP-1 is stimulated by phosphorylation of the C-terminal TAD (Shore et al., 1996; Strahl et al., 1996). Furthermore, deletion analysis indicates that DNA binding by SAP-2 is also regulated by an intramolecular inhibitory process (Maira et al., 1996; Price et al., 1996), although in this case phosphorylation does not appear to be sufficient to stimulate high-affinity DNA binding. In SAP-1, deletion analysis has implicated sequences including the B-box as important inhibitory determinants (Dalton and Treisman, 1992), and in SAP-2 further sequences located C-terminal to the B-box have been implicated in the inhibitory process (Maira et al., 1996; Price et al., 1996). A short motif known as the NID (net inhibitory domain) represents a cis-acting inhibitory motif in SAP-2 (Maira et al., 1996). Thus, although several similarities exist in the autoinhibitory regions and regulatory mechanisms used to control DNA binding by the different TCFs, there are also key differences.

DNA binding by other more diverse members of the ETS-domain transcription factor family is also regulated by autoinhibitory mechanisms (Sharrocks et al., 1997; Graves and Petersen, 1998). In Ets-1, DNA-binding inhibition is mediated by cooperatively acting N- and C-terminal inhibitory motifs that act to suppress DNA binding by the ETS-domain (Jonsen et al., 1996). DNA binding is accompanied by the unfolding of an α-helix in the N-terminal inhibitory motif (Petersen et al., 1995). In contrast, in Elk-1, phosphorylation induces α-helix formation and subsequent activation of DNA binding. Further changes in the tertiary structure of Elk-1 are observed upon phosphorylation. Similarly, further changes in Ets-1
might also be detected once the activation trigger is identified for this transcription factor.

Finally, it is becoming clear that many members of diverse families of transcription factors are subject to intramolecular inhibition, which leads to reductions in their DNA binding capacity. In many cases, the regulatory trigger that relieves this inhibition is unknown, although DNA has been shown to be able to act in the reciprocal manner as an allosteric activating trigger (reviewed in Lefstin and Yamamoto, 1998). The tumour suppressor p53 exists in an inhibited state that, like Elk-1, can be stimulated to bind DNA by phosphorylation. However, in p53, peptides were identified that act cooperatively with casein kinase II to stimulate DNA binding (Hupp et al., 1995). In this study, we have used peptides that cause the opposite phenomenon, and act to antagonize the effect of phosphorylation on DNA binding by Elk-1. Similar approaches can be applied to other transcription factors to help understand the mechanisms of autoinhibition in the context of full-length proteins.

Conclusions

In addition to activating DNA binding, the conformational changes we detect are also likely to reflect the enhanced ability of phosphorylated Elk-1 to activate transcription by enhancing/modifying interactions with co-regulatory proteins. Our results significantly enhance the current understanding of how Elk-1 functions at the molecular level. Direct evidence is provided for an allosteric switch that transduces the phosphorylation signal through intimately interacting modules in Elk-1 to cause conformational changes and the concomitant activation of DNA binding. More generally, this study provides significant insights into how transcription factor activity might be regulated by phosphorylation.

Materials and methods

Plasmid constructs

The following plasmids were used for expressing GST fusion proteins in *Escherichia coli*. pAS545 (encoding GST–Elk310; Elk-1 amino acids 310–428), pAS767 (encoding GST–ElkD; Elk-1 amino acids 307–329) (Yang et al., 1998a), pAS77 (encoding GST–ElkB; Elk-1 amino acids 1–205) are derivatives of pAS197 (Ling et al., 1998). Two bands (occasionally three) were typically detected by Western blotting with an anti-Flag antibody following purification of Elk-1, the smaller of which represent N-terminally deleted products (see zero time points in Figure 2A, C and D). Kinase reactions were carried out as described previously using recombinant, active ERK2 (NEB) (Yang et al., 1998a). The relative stoichiometry of kinase to Elk-1 substrate used was typically <1:50.

Peptides

All peptides were synthesized in the molecular biology facility at Sheffield University. The peptides were purified by HPLC, and their purity and molecular weights were verified by mass spectroscopy. The phosphorylated (+P) and non-phosphorylated (−P) C-domain peptides were synthesized in parallel, but the +P peptide was further modified chemically prior to purification. Each peptide was synthesized by standard 9-fluorenylmethoxycarbonyl (FMOC) chemistry, and in the case of the +P peptide, triphenylmethyl serine was used at positions 383 and 389. The peptide was acetylated on the resin and treated with 1% trifluoro acetic acid (TFA)/5% trisopropylsilane in dichloromethane to remove the triphenylmethyl groups. The resin was dried and treated with a dimethylformamide (DMF)–tetrazole–dibenzyloxycarbonyl (Z)–N,N-diisopropylphosphoramide, followed by washing with DMF and cleavage of the peptide from the resin.

Proteolytic digests

Partial proteolytic digests were carried out by adding trypsin (10–40 ng) to purified Elk-1 derivatives (1–5 pmol) in 20 μl reaction volumes. Digests were carried out at 30°C for either 10 min or over a 60 min time course, and were terminated by the addition of SDS loading buffer and immediate boiling at 100°C for 10 min. Proteolytic fragments were fractionated on SDS–PAGE containing 12% standard acrylamide or 10% ProSieve® acrylamide (FMC). C-terminally tagged fragments were visualized by Western blot analysis using anti-M2 Flag-tag antibodies (Yang et al., 1998a) and molecular weights estimated by comparison to known standards. Samples were also analysed by gel-retardation analysis in which the ETS-domain acts as an N-terminal tag. For digestion in the presence of the E74 binding site, protein samples were incubated with the DNA for 10 min at room temperature prior to protease addition.

Circular dichroism and fluorescence spectra

CD spectra were obtained from 100–250 μg/ml samples in 0.2 mm quartz cuvettes on a Jobin–Yvon CD6 spectrophotometer. Curve fitting and α-helical content were calculated according to the method in Manavalan and Johnson (1987). The CD spectra of Elk-1(L158P) showed a similar phosphorylation-inducible change to the WT protein (Figure 1E) [26–31% (WT), 26–34% (L158P)]. Fluorescence emission spectra were obtained in ratio mode on an SLM 8100 spectrophotometer from 500 μl samples (10–25 μg/ml) in a 5-mm-pathlength cuvette, using an excitation wavelength of 280 nm and cross-polarizing prisms to remove scattering light. Samples for CD and fluorescence emission spectroscopy were measured in 1× phosphate-buffered saline (100 mM NaCl, 1 mM KCl, 5 mM Na2HPO4, pH 7.4).

GST pull-down assays

Pull-down assays for protein–protein interactions with GST fusion proteins were carried out essentially as described previously (Yang et al., 1998a). Samples were subjected to SDS–PAGE and detected by Western blot analysis using anti-M2 Flag epitope antibodies.

Gel-retardation assays

Gel-retardation assays were performed in 10 μl reaction volumes with a 2°-labelled E74 site and analysed as described previously (Yang et al., 1998a). In peptide competition experiments, different concentrations (final concentrations ~7–350 μM) of peptides were pre-incubated with the proteins for 30 min at room temperature prior to the addition of DNA.
Acknowledgements

We thank Margaret Bell and Katherine Stewart for excellent technical and secretarial assistance, Bob Liddell for DNA sequencing, Arthur Moir for peptide synthesis, Richard Treisman, Paula Yates and members of our laboratory for comments on the manuscript and stimulating discussions, and Alan Whitmarsh and Roger Davis for advice. P.S. holds a Wellcome Trust International Prize Travelling Research Fellowship. This work was supported by grants from the Cancer Research Campaign (CRC), the Wellcome Trust and a Lister Institute of Preventative Medicine Research Fellowship to A.D.S.

References

