Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly

Uta K. von Schwedler¹, Timothy L. Stemmler¹, Victor Y. Klishko¹, Su Li¹, Kurt H. Albertine², Darrell R. Davis¹,³ and Wesley I. Sundquist¹,⁴

Departments of ¹Biochemistry, ²Pediatrics and ³Medicinal Chemistry, University of Utah, Salt Lake City, UT 84132, USA
⁴Corresponding author
e-mail: sundquist@medschool.med.utah.edu

After budding, the human immunodeficiency virus (HIV) must ‘mature’ into an infectious viral particle. Viral maturation requires proteolytic processing of the Gag polyprotein at the matrix–capsid junction, which liberates the capsid (CA) domain to condense from the spherical protein coat of the immature virus into the conical core of the mature virus. We propose that upon proteolysis, the amino-terminal end of the capsid refolds into a β-hairpin/helix structure that is stabilized by formation of a salt bridge between the processed amino-terminus (Pro1) and a highly conserved aspartate residue (Asp51). The refolded amino-terminus then creates a new CA–CA interface that is essential for assembling the condensed conical core. Consistent with this model, we found that recombinant capsid proteins with as few as four matrix residues fused to their amino-termini formed spheres in vitro, but that removing these residues refolded the capsid amino-terminus and redirected protein assembly from spheres to cylinders. Moreover, point mutations throughout the putative CA–CA interface blocked capsid assembly in vitro, core assembly in vivo and viral infectivity. Disruption of the conserved amino-terminal capsid salt bridge also abolished the infectivity of Moloney murine leukemia viral particles, suggesting that lentiviral and oncoviruses mature via analogous pathways.

Keywords: assembly/capsid protein/human immunodeficiency virus/maturation/retrovirus

Introduction

Retroviral assembly is initially driven by polymerization of the Gag polyprotein, which forms a spherical shell associated with the inner membrane of the freshly budding particle (Figure 1). Concomitant with budding, the viral protease cleaves Gag into a series of smaller, discrete proteins. These processed proteins then rearrange to form the mature, infectious viral particle (reviewed in Kräusslich, 1996). Gag processing thereby permits the orderly transformation from a virion that is competent to assemble and bud from one cell into a virion that can disassemble and replicate in a new host cell. The human immunodeficiency virus type 1 (HIV-1) Gag protein is proteolytically processed into the following discrete proteins and spacer peptides: matrix (MA, residues 1–132), capsid (CA, 133–363), p2 (364–376), nucleocapsid (NC, 377–432), p1 (433–448) and p6 (449–500) (Figure 1A). Upon maturation, the matrix protein remains associated with the inner viral membrane, while capsid, nucleocapsid and the viral RNA condense into the center of the virus (Figure 1B). The diploid RNA genome and associated NC proteins form an electron-dense ribonucleoprotein complex, with a concomitant increase in the thermal stability of the dimeric RNA (Fu et al., 1994; Feng et al., 1996). The processed capsid protein then forms a conical shell that encapsidates the RNA–NC copolymer. In the absence of Gag proteolysis, neither capsid core formation (Göttlinger et al., 1989; Peng et al., 1989; Schatzl et al., 1991; Kaplan et al., 1993; Kräusslich et al., 1995) nor RNA stabilization occur (Fu et al., 1994), indicating that the driving force underlying maturation is the creation of new interactions between the processed domains of Gag.

Three-dimensional structures are now available for the three major Gag-derived proteins of HIV-1, either as full-length proteins [matrix (Massiah et al., 1994; Matthews et al., 1994; Rao et al., 1995; Hill et al., 1996) and nucleocapsid (Morellet et al., 1992; South and Summers, 1993)] or as a compilation of the two independent folding domains of capsid (Gamble et al., 1996, 1997; Gitti et al., 1996; Momany et al., 1996). It is not clear, however, how accurately these proteins mimic their analogous domains within the unprocessed Gag polyprotein. Significant local structural changes may occur when Gag is cleaved, particularly given the dramatic global changes that accompany viral maturation. Indeed, the detailed structure of the processed amino-terminal domain of capsid strongly suggests that the conformation surrounding the MA–CA junction of Gag changes significantly upon proteolysis (Gamble et al., 1996; Gitti et al., 1996; Momany et al., 1996). The amino-terminal end of the processed capsid protein forms a β-hairpin that spans residues 1–13. The hairpin folds the charged amino-terminus of Pro1 back into the protein, where it forms a buried salt bridge with the carboxylate of Asp51 (Figures 1C and 2). Several observations suggest that the amino-terminal capsid β-hairpin forms after proteolytic cleavage at the MA–CA junction. First, the capsid amino-terminus is uncharged prior to proteolysis and thus cannot form the stabilizing salt bridge with Asp51. Moreover, the buried amino-terminus of the processed capsid protein appears sterically incompatible with a matrix protein extension or with processing by the viral protease, which recognizes the MA–CA junction in an extended conformation (Whodawer and Erickson, 1993).

The proposed proteolytic refolding of capsid is analogous to zymogen activation in the serine proteases,
where precursor processing also causes the new amino-terminus to rearrange into a salt bridge with a buried aspartate residue (Sigler et al., 1968). The energetics of the trypsinogen to trypsin folding transition have been studied in detail (Hedstrom et al., 1996). In that case, the salt bridge between the amino-terminus and the buried Asp residue contributes significant stabilization energy (~3 kcal/mol), as does the packing of the amino-terminal isoleucine side chain into a hydrophobic binding site in the protein (~5 kcal/mol). Refolding of the HIV-1 capsid amino-terminus appears to be driven by a series of analogous interactions: (i) a salt bridge between the amino-terminus and Asp51, (ii) a second hydrogen bond between the amino-terminus and Gln13 O, (iii) van der Waals contacts between the invariant Pro1 ring and the Cα atoms of Ile15 and Gly46 and (iv) hydrogen bonding interactions between the two strands of the β-hairpin.

We propose that the functional consequence of capsid refolding is the creation of a new CA–CA interface in the mature capsid core (the ‘amino-terminal capsid interface’). This model is depicted schematically in Figure 1C and is based upon the crystal structure of the amino-terminal domain of capsid in complex with cyclophilin A (Gamble et al., 1996). The major CA–CA interface in these crystals is created by intermolecular packing of capsid helices 1 and 2 into a four-helix bundle (with their symmetry-related pairs; Figures 1C and 2). The four-helix bundle buries a total of 570 Å²/subunit and exhibits a packed hydrophobic core ringed by hydrophilic interactions. Additional intermolecular interactions are formed between the
two amino-terminal β-hairpins that project above the four-helix bundle (burying 230 Å²), suggesting how folding of the capsid β-hairpin could be coupled to formation of this interface.

In summary, we propose that proteolysis at the MA–CA junction of Gag allows retroviral maturation by refolding the capsid amino-terminus and thereby facilitating the protein’s rearrangement into the central conical core. Experiments described here are aimed at testing this mechanistic model for a simple developmental switch.

Results

Mutations in the capsid amino-terminal interface inhibit capsid assembly in vitro

The importance of the amino-terminal CA–CA interface for capsid assembly was tested initially using pure recombinant capsid proteins (Figure 3). In vitro, the HIV-1 capsid protein can assemble into long hollow cylinders (Figure 3A) which presumably utilize many of the same CA–CA interactions as the viral capsid core (Campbell and Vogt, 1995, 1997; Groß et al., 1997). Although the precise relationship between the viral core and the capsid cylinders remains to be elucidated, the two structures appear to share at least a subset of similar CA–CA interactions. For example, as shown in Figure 3B, capsid cylinder assembly is blocked by a point mutation (M185A) that disrupts the well-characterized carboxy-terminal capsid dimer interface and blocks viral replication in culture (Gamble et al., 1997). Instead of cylinders, CA M185A forms long strings of protein, as though destabilizing the repeating carboxy-terminal capsid dimer interface prevents the protein from winding up into a cylinder.

As described above, the amino-terminal capsid interface is composed of two distinct structural elements: the four-helix bundle and the packed β-hairpins (Figure 2). Two different capsid point mutations, M39D and D51A, were used to test the importance of each of these secondary structural elements for cylinder formation. Met39 is buried within the core of the four-helix bundle, and mutation to Asp was therefore expected to disrupt this hydrophobic core. Asp51 forms a salt bridge with the amino-terminal capsid proline residue, and mutation to Ala was expected to break the salt bridge and thereby destabilize the β-hairpin.

The wild-type and mutant capsid proteins were expressed and purified to homogeneity as described in Materials and methods. Concentrated solutions of each protein were incubated at high ionic strength for 1 h at 37°C [400 μM protein, 1 M NaCl, 50 mM Tris–HCl (pH 8.0)]. Oligomeric assemblies were collected by centrifugation, fixed and observed in thin sections by transmission electron microscopy (TEM). As shown in Figure 3A, the wild-type capsid protein efficiently assembled into hollow cylinders averaging 32 ± 2 nm in diameter (n = 20) and up to 2000 nm in length. In contrast, both amino-terminal capsid interface mutants were defective in cylinder assembly, although the two mutant proteins behaved somewhat differently.

Oligomeric CA M39D under assembly conditions produced very little material that could be collected by centrifugation or discerned in thin section by TEM (Figure 3C). Oligomeric CA M39D complexes were also absent in negatively stained samples deposited directly on Formvar carbon-coated copper grids (not shown). Thus, the M39D mutation entirely abrogated the ability of capsid to form large arrays under our assembly conditions. In contrast, the CA D51A protein did form large arrays that were collected by centrifugation. However, electron micrographs revealed that the insoluble material consisted mainly of large amorphous protein aggregates. In some preparations, we observed cylinders amongst the aggregated protein (Figure 3D). Even when they formed, however, these CA D51A cylinders were shorter and far less prevalent than the wild-type CA cylinders. Thus, the D51A mutation inhibited, but did not abolish, capsid cylinder formation. Overall, the data are consistent with a role for helix 2 in cylinder formation, and suggest that the capsid β-hairpin, although not absolutely essential, also contributes to capsid assembly in vitro.

Matrix residues redirect capsid assembly from cylinders to spheres

The role of the MA–CA junction in capsid assembly was also examined in vitro, using proteins in which the final 28, 6 or 4 amino acids of matrix were fused onto the amino-terminus of CA. The first of these proteins, designated MA28–CA, was designed to initiate at the first amino acid beyond the globular domain of the mature matrix protein (Massiah et al., 1994; Matthews et al., 1994; Hill et al., 1996). The other two proteins, designated MA6–CA and MA4–CA, were designed to have minimal matrix extensions because NMR spectroscopic studies revealed that most (or all) of the matrix residues of MA28–CA were disordered in solution (see below) and because the MA28–CA protein was partially insoluble when expressed in Escherichia coli, presumably owing to aggregation of the disordered matrix residues.

Unlike the CA protein, the MA–CA fusion proteins did not form cylinders in vitro. Instead, the fusion proteins assembled into spherical particles as well as into amorphous aggregates (Figure 4). These particles were deposited on Formvar carbon-coated copper grids and visualized by negative staining (Figure 4B). The spheres formed by MA4–CA were readily distinguishable from the CA cylinders (compare Figure 4A and B, note scale

Fig. 2. Ribbon diagram of the capsid amino-terminal interface. Amino acids mutated in this study are shown in red.
Fig. 3. Aberrant *in vitro* assembly of mutant HIV-1 capsid proteins. The figure shows representative thin-section transmission electron micrographs of the structures formed by wild-type CA (positive control) (A), CA M185A (negative control) (B), CA M39D (C) and CA D51A (D). Each protein was incubated for 1 h at 37°C in the assembly buffer (400 μM protein). Large aggregates (if any) were collected by centrifugation, fixed, stained and analyzed by thin-section TEM. The small circular structures in the micrograph of the wild-type capsid protein are hollow cylinders that were sectioned perpendicular to the cylinder axis. Note that the amorphous protein aggregates formed by CA D51A occasionally also contained imbedded cylinders. Nevertheless, the selected field shows an unusually high concentration of D51A cylinders. Cylinder widths were 32 ± 2 nm (wt CA, *n* = 31) and 33 ± 3 nm (CA D51A, *n* = 20). Scale bars are 100 nm.

Fig. 4. Spherical assembly of the MA_4_-CA protein. Left: wild-type CA (A and C), cylinders; right: MA_4_-CA spheres (B and D). Direct transmission electron micrographic images of negatively stained particles are shown above (A and B), and thin-section transmission electron micrographs of positively stained particles are shown below (C and D). Particle assembly conditions are as in Figure 3. Amorphous protein aggregates were also observed in thin-section transmission electron micrographs of the MA_4_-CA preparations (not shown). Scale bars are 100 nm.
structures of its composite domains, which indicate that models for the intact capsid protein derived from crystal sphere formation varied inversely with the length of the proteins (Figure 4D), and the thickness of the shell was acetate staining of thin sections of the MA–CA fusion virion (Fuller et al., 1997). In the three constructs tested, the efficiency of the spherical shells were often clearly defined by uranyl acetate staining of thin sections of the MA4–CA fusion proteins (Figure 4D), and the thickness of the shell was 5.6 ± 0.6 nm (n=31). This thickness is compatible with models for the intact capsid protein derived from crystal structures of its composite domains, which indicate that CA spans ~60 Å in its longest dimension (Gamble et al., 1997). In the three constructs tested, the efficiency of sphere formation varied inversely with the length of the matrix tail, and the MA28–CA protein formed spheres very inefficiently, with most of the protein simply aggregating (data not shown).

These experiments demonstrate that fusing as few as four matrix residues onto the amino-terminus of capsid redirects protein assembly from cylinders to spheres. This transformation is strikingly reminiscent of the morphological transformation that accompanies viral maturation, where the unprocessed capsid protein initially participates in forming the spherical protein shell of the immature virus, but then rearranges into the conical core following proteolysis at the MA–CA junction.

NMR spectroscopic characterization of capsid protein constructs

NMR spectroscopy was used to test whether the protein constructs described above altered the structure of the amino-terminal end of capsid. The NMR studies were performed on monomeric proteins encompassing the first 146 or 151 residues of capsid (i.e. lacking the protein’s carboxy-terminal dimerization domain). Complete proton chemical shift assignments have been reported previously for CA151 (Gitti et al., 1996), and it was therefore possible to use amide proton NMR chemical shift perturbations as a sensitive probe for localizing structural changes in the MA4–CA, MA28–CA, CA M39D and CA D51A proteins. The initial chemical shift analysis was performed on the MA28–CA151 fusion protein (not shown). We identified 36 amide protons within the amino-terminal capsid domain of this protein that shifted by >0.2 p.p.m. versus the processed CA151 protein. The shifted residues were clustered throughout the β-hairpin and the helices against which the hairpin normally packs (1, 2, 3 and 6). As expected, all of the shifted resonances returned to their positions upon cleavage at the MA–CA junction with recombinant HIV-1 protease (not shown). We therefore attribute the chemical shift changes within the capsid domain to structural perturbations introduced by the additional matrix residues. Interestingly, the chemical shifts of at least 17 of the matrix residues did not change significantly upon proteolysis, indicating that the majority of matrix residues in the MA28–CA151 protein were disordered both before and after proteolysis. Thus, this analysis suggested that the matrix residues caused refolding of the amino-terminal end of capsid, but did not themselves adopt a defined structure.

To investigate the refolding event further, we analyzed the backbone amide chemical shift changes in the shorter MA4–CA146 fusion protein (capsid residues 147–151, which are disordered in CA151, were deleted from this construct). The 1H, 15N heteronuclear single quantum coherence (HSQC) NMR spectra of CA151 (blue) and MA4–CA146 (red) are shown superimposed in Figure 5A. The majority (91/134) of backbone amide proton resonances within the amino-terminal domain of capsid were not significantly shifted in the MA4–CA protein. However, 43 amide protons were shifted by >0.2 p.p.m. in the 1H dimension or 0.3 p.p.m. in the 15N dimension upon addition of the four matrix residues. Locations of the shifted (red) and unshifted (blue) MA4–CA146 residues were mapped back onto the structure of the amino-terminal domain of capsid (Figure 5B). Strikingly, the backbone amide protons of at least 26 of the first 29 capsid residues, spanning the β-hairpin and helix 1, were significantly shifted in the fusion protein. In addition, 11 of 12 residues spanning helix 3 were also significantly shifted, as were several residues in helices 2 and 6. Amide protons throughout the remainder of the protein remained unshifted (except at the very C-terminal end of the domain, presumably owing to the absence of residues 147–151), indicating that the mutation does not significantly alter the structure of helices 4, 5 and 7 (i.e. the left half of the molecule in Figure 5B). Taken together, these chemical shift analyses strongly support the model that the amino-terminal end of capsid adopts significantly different structures before and after proteolysis. We are currently determining the three-dimensional structure of the MA4–CA fusion protein in order to define precisely how the additional matrix residues refold this region of capsid.

A similar approach was used to localize the structural changes caused by the CA M39D and D51A mutations. As shown in Figure 5C, the D51A mutation caused significant shifts in 51 of the 138 CA151 backbone amide protons versus the native protein. Although Asp51 is located near the amino-terminus of helix 3, chemical shift changes were again propagated throughout the β-hairpin and its adjacent helices (Figure 5D). The perturbed amide proton chemical shifts generally moved toward random coil values, indicating that disruption of the Pro1–Asp51 salt bridge altered the equilibrium to favor unfolding of the amino-terminal end of capsid. In contrast, only 19 of the 138 amide proton residues were significantly shifted in the CA M39D mutant (Figure 5E). In this case, the shifted residues clustered about the mutation site and the structural perturbations were not propagated to the amino-terminal β-hairpin (Figure 5F). This mutation therefore does not significantly disrupt the capsid structure beyond helices 1 and 2.

Point mutations within the capsid amino-terminal interface render HIV-1 non-infectious

Site-directed mutagenesis was used to examine whether the capsid amino-terminal interface is essential for viral replication. Five different point mutations designed to disrupt the interface were tested for their effects on HIV-1 replication (Figure 2). As described above, the capsid D51A mutation was designed to unfold the β-hairpin and thereby disrupt its intermolecular contacts. Capsid A22D, E28,29A,
Fig. 5. NMR spectral mapping of structural perturbations in MA4–CA146 (A and B), CA151 D51A (C and D) and CA151 M39D (E and F). Left: superimpositions of the 1H,15N HSQC NMR spectrum of wild-type CA151 (blue) upon those of MA4–CA146 (A), CA151 D51A (C) and CA151 M39D (E) (red). Right: locations of backbone amide protons that exhibit significant chemical shift changes versus wild-type CA151 in MA4–CA146 (B), CA151 D51A (D) and CA151 M39D (F). Amide protons shifted by >0.2 p.p.m. in the 1H dimension or >0.3 p.p.m. in the 15N dimension (red) are shown mapped back onto the structure of residues 1–146 of the wild-type CA151 protein (blue). Proline residues are depicted in the same color as their immediately adjacent residues.

M39D and A42D point mutations were designed to disrupt intermolecular packing interactions within the hydrophobic core of the four-helix bundle at the CA–CA interface. Each of the mutated residues was selected to lie on the surface of the monomeric CA protein in order to minimize intramolecular structural perturbations. A final mutation (Q7,9A) was used as a control to test the predictive power of the CA151 crystal structure. Gln7 and Gln9 reside on the outside of the β-hairpin loop and make no intermolecular contacts in the CA151 crystal structure. The Q7,9A mutation was therefore not expected to interfere significantly with capsid core assembly.
proviral DNA constructs encoding wild-type and mutant HIV-1NL4-3 genomes were transfected into 293T producer cells, and viral particles were harvested from the supernatant after 2 days. Particle production was analyzed initially by assaying reverse transcriptase activity and capsid (p24) levels in the supernatant. These levels were up to 3-fold lower than wild-type for several of the mutant viruses (Table I). In order to determine the fraction of released capsid protein present in intact viral particles, the virions were purified and concentrated by centrifugation through a 20% sucrose cushion. As shown in Table I, on average 77% of the released wild-type capsid protein was pelletable, whereas this value ranged from 15 to 40% for the various mutants. Similar values were obtained for viruses produced in transfected COS-7 cells (not shown).

Hence, the production of intact, stable virions was reduced 4- to 20-fold by the various amino-terminal interface mutations. Nevertheless, all of the mutants produced virions, and we therefore characterized their protein composition, infectivity and morphology.

The protein composition of the viral particles was analyzed by Western blotting of sucrose-purified virions. All of the mutant virions incorporated reverse transcriptase (Figure 6) and envelope proteins (not shown). Gag was also incorporated and processed to yield CA and MA proteins of normal size in all mutants except D51A (see below). The levels of matrix and capsid relative to the unprocessed Gag protein were generally reduced in the mutants (particularly A42D, Figure 6). These differences may reflect reduced processing of the mutant Gag proteins and/or reduced stability of the processed mutant virions during purification. Western blots of the D51A virions reproducibly showed multiple bands that corresponded to additional Gag-derived proteins, including p25, p24 and a series of truncated p24 capsid proteins. The smaller proteins presumably are degradation products that arose because the D51A mutation unfolded the protein’s amino-terminus and rendered it susceptible to proteolysis.

Viral infectivity was tested initially in cultured human T cell lines. Growth curves for the wild-type and mutant viruses in SupT1 cells are shown in Figure 7. As expected, the wild-type virus replicated to high levels, with virus production peaking after 5–6 days and then declining as the host cells died. Replication of the Q7,9A mutant virus was delayed by 4 days versus wild-type virus, but eventually peaked at similar levels. In contrast, none of the viruses with CA amino-terminal interface mutations replicated to detectable levels at any time point tested. These mutant viruses also failed to replicate in CEM and H9 cells (data not shown). Thus, all of the mutations designed to disrupt the capsid amino-terminal interface also abolished viral replication in cultured T cells.

Viral infectivity was also tested in P4 cells in a single cycle MAGI assay (Kimpton and Emerman, 1992). As shown in Table I, every mutation designed to disrupt the capsid amino-terminal interface again dramatically

Table I. Phenotypes of HIV-1 capsid mutants

<table>
<thead>
<tr>
<th>Capsid mutation</th>
<th>Virus production</th>
<th>Pelletable virus</th>
<th>Infectivity</th>
<th>Cone formation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT/p24 assays</td>
<td></td>
<td>T cell lines</td>
<td>MAGI</td>
</tr>
<tr>
<td>Q7,9A</td>
<td>78 ± 8%</td>
<td>65%</td>
<td>4 days</td>
<td>10% no</td>
</tr>
<tr>
<td>A22D</td>
<td>30 ± 18%</td>
<td>39%</td>
<td>no</td>
<td>1.6% no</td>
</tr>
<tr>
<td>E28,29A</td>
<td>66 ± 10%</td>
<td>32%</td>
<td>no</td>
<td>0.04% no</td>
</tr>
<tr>
<td>M39D</td>
<td>37 ± 17%</td>
<td>15%</td>
<td>no</td>
<td>0.04% no</td>
</tr>
<tr>
<td>A42D</td>
<td>53 ± 8%</td>
<td>20%</td>
<td>no</td>
<td>0.05% no</td>
</tr>
<tr>
<td>D51A</td>
<td>61 ± 45%</td>
<td>25%</td>
<td>no</td>
<td>0.04% no</td>
</tr>
<tr>
<td>WT</td>
<td>100%</td>
<td>77%</td>
<td>yes</td>
<td>100% yes</td>
</tr>
</tbody>
</table>

a Virus production from transfected 293T cells, assayed as reverse transcriptase activity and p24 CA antigen levels in the supernatant. Values from both measurements were converted to percentages of wild-type levels in each transfection, averaged, and the values are reported ± 1 SD (n=3–7). Absolute levels of wild-type virus were (19 ± 5)x10^4 c.p.m./10 μl (n=7) in RT assays and 3.5 ± 0.9 μg p24/ml (n=7) in p24 ELISA assays.

b Virion particles were pelleted through 20% sucrose and quantitated by p24 ELISA. The reported values are the percentage of total p24 in the supernatant that pelleted through the sucrose cushion, averaged from two experiments.

c Viral replication detected in SupT1, CEM and/or H9 human T cells by assaying reverse transcriptase activity in the supernatant of infected cells (growth curves).

d Infectivity in P4 (HeLa.CD4.LTR-β-gal) cells in a single round of infection. Blue cells per ng of p24 in the inoculum are reported as a percentage of wild-type (infectious titer 620 ± 238). Values are an average of three experiments. Note that others have also reported measurable background staining for non-infectious HIV-1 in this assay (e.g. Wu et al., 1997), perhaps because Tat protein is sometimes synthesized from extrachromosomal DNA even in non-productive infections.

e Conical viral cores detected by TEM in thin sections of concentrated virions or of cells producing virus.
reduced viral infectivity. The titer of the A22D mutation was reduced >50-fold versus the wild-type control, and titers of the other amino-terminal interface mutants were reduced 2000-fold or more (essentially to zero, see footnote in Table I). In contrast, the Q7,9A control mutant was also reduced in infectivity, but by only 10-fold versus the wild-type virus, in good agreement with the growth curve assays.

Capsid amino-terminal interface mutants do not form conical viral cores

The mutant viral particles were examined for morphological defects using TEM (Figure 8). The most dramatic observable phenotype was the lack of conical cores in all of the amino-terminal interface mutants. At least 200 virion particles were examined for each mutant, and in no case was a conical core observed. In contrast, a significant fraction (~25%) of the mature wild-type HIV-1 and Q7,9A control virions formed discernible cores (Figure 8 A–C).

The mutant virions also exhibited apparent Gag assembly defects. Firstly, they were more difficult to concentrate and observe by TEM owing to reduced particle production. Moreover, they generally appeared more heterogeneous in size and shape than the wild-type virions. For example, size heterogeneity was evident in the electron micrographs of the CA E28,29A mutant (Figure 8E), and shape heterogeneity was evident in the micrographs of the M39D mutant (Figure 8F). Despite this heterogeneity, mutant virions with central spherical density (often acentrically located) were observed frequently, as though the RNA–NC complex had condensed, but the capsid core had failed to assemble around it (e.g. in the micrograph of the D51A mutant; Figure 8H). Immature mutant particles were also common, often with a break in the outer ring of Gag protein. Taken together, these data indicate that the amino-terminal mutations interfere with both Gag assembly and capsid maturation. These phenotypes could, of course, be causally linked. Nevertheless, the lack of cones in every one of the amino-terminal capsid interface mutants is consistent with the model that this interface plays an essential role in viral core formation.

Importance of the amino-terminal capsid salt bridge for MMLV replication

To evaluate the potential generality of the Pro1–Asp salt bridge, we aligned capsid protein sequences from a series
HIV-1 CA N-terminus refolding facilitates core assembly

Fig. 9. Primary sequence alignment of representative retroviral capsid proteins. The invariant Pro1 and conserved Asp (Glu) residues are highlighted by arrows. We are aware of only one exception to the invariance of Asp51 in HIV-1 strains, which is a single isolate (VI354) encoding a capsid Asn51 residue (Louwagie et al., 1993). The remaining four invariant capsid residues in this alignment (shaded) are: Gly106, a residue that kinks the capsid backbone and exhibits \(\phi/\psi \) angles (70°/22°) that are unfavorable for any other amino acid (Gamble et al., 1996); and Gln155, Glu159 and Arg167, which form an interlocking hydrogen bonding network within the major homology region (MHR) (Gamble et al., 1997). SIV, simian immunodeficiency virus; RSV, Rous sarcoma virus; HTLV-I, human T-cell leukemia virus type I; MMTV, mouse mammary tumor virus; JSRV, Jaagsiekte retrovirus; VISN, visna virus; FIV, feline immunodeficiency virus; BIV, bovine immunodeficiency virus; EIAV, equine infectious anemia virus; MMLV, Moloney murine leukemia virus. This alignment was created using ProPack (Feng and Doolittle, 1996).

of representative retroviruses. As shown in Figure 9, the potential to form an amino-terminal Pro1–Asp (or Glu) salt bridge is conserved across six of the seven genera of retroviruses (i.e. all but the spumaviruses) (Coffin, 1992). This conservation suggests that proteolytic refolding of capsid during maturation may occur throughout lentiviral and oncoviral capsid proteins. Intriguingly, spumaviruses, which are the only retroviruses that do not undergo analogous proteolytic maturation (Gelderblom and Frank, 1987; Konvalinka et al., 1995), also lack the conserved Pro and Asp residues (not shown in Figure 9).

The functional importance of the putative Pro1–Asp salt bridge was tested by mutagenesis of the C-type oncovirus Moloney murine leukemia virus (MMLV). The effect of an MMLV capsid Asp63 to Ala (D63A) mutation (equivalent to D51A in HIV-1 CA) was assayed in a single replication cycle using the MMLV pCL packaging vector system. In this system, Gag proteins from wild-type or mutant pCLeco vectors encapsidate RNA from the co-transfected retroviral vector pCLlacZ (Naviaux et al., 1996). Mouse NIH-3T3 cells successfully transduced with infectious particles containing pCLlacZ produce \(\beta \)-galactosidase and stain blue with Xgal. However, mutations in pCLeco that impair capsid protein function will reduce the titer of the viral vector and result in fewer blue cells.

The MMLV capsid D63A mutation reduced particle release into the supernatant slightly (3- to 5-fold), as assayed by reverse transcriptase activity. Western blots of pelleted virions revealed that mutant and wild-type particles incorporated similar levels of Gag and CA, although Gag processing was slightly aberrant, with a Gag processing intermediate accumulating at higher levels in the mutant virions (Figure 10). In spite of the fact that particle production was only marginally affected, the D63A mutation again had a drastic effect on viral replication, reducing infectivity to undetectable levels (<1 infectious particle/ml), whereas the wild-type virus had titers of \((5 \pm 1) \times 10^6\) infectious particles/ml. Thus, CA Asp63 is also essential for MMLV replication. Although the precise block to infectivity of this mutant was not characterized further, the major defect again arose after viral budding and is most likely improper assembly of the capsid core, indicating that similar mechanisms for capsid maturation operate in both the lentivirus HIV-1 and the oncovirus MMLV.

Discussion

Our experiments support a model in which proteolytic cleavage at the MA–CA junction of the retroviral Gag polyprotein refolds the amino-terminal end of capsid into
a β-hairpin/helix structure that is stabilized by a salt bridge between the protein's processed amino-terminus and a conserved acidic residue (Asp51 in HIV-1). The refolded capsid amino-terminus then creates a new CA–CA interface, allowing assembly of the mature capsid core. Thus, proteolysis at the MA–CA junction appears to act as a switch that redirects capsid assembly from spheres to cylinders (or cones).

Previous mutational analyses have shown that the amino-terminal domain of capsid plays an essential role in establishing viral cores of normal morphology (Dorfman et al., 1994; Reicin et al., 1996). Those studies revealed that core formation was abolished by deletions (Δ) or insertions (I) of multiple amino acids at capsid positions 111, Δ19–21, 120, Δ43–45 and 152. Those changes generally resulted in viral phenotypes that are similar to those reported herein (i.e. aberrant Gag assembly, heterogeneous particle production, lack of viral cores and, in some cases, defective cleavage at the CA–p2 junction). However, all of these multiple amino acid mutations fall within α-helices or β-strands, and may therefore have grossly perturbed the capsid protein structure, making it difficult to interpret the results in terms of a detailed structural model.

Guided by the crystal structure of CA151 (Gamble et al., 1996), we designed five point mutations that were expected to disrupt the amino-terminal capsid interface, but minimize other structural perturbations. All of the mutations produced non-infectious virions that lacked conical cores. These data are consistent with, but do not prove, the hypothesis that the crystallographically defined capsid interface is also used in forming the viral core. The amino-terminal capsid interface is bipartite, consisting of packed β-hairpins (residues 1–13) and a four-helix bundle (residues 17–43). The helical interface is more extensive and more hydrophobic than the β-hairpin interface, and should therefore stabilize the CA–CA interaction to a greater extent, particularly under the high ionic strength conditions of the in vitro assembly assay which will favor hydrophobic interactions. Consistent with this idea, a point mutation in the helical region (M39D) completely abolished capsid cylinder formation in vitro whereas a mutation that destabilized the β-hairpin (D51A) merely diminished cylinder formation. Similarly, Kräusslich and co-workers have found recently that deleting the entire β-hairpin sequence blocks a recombinant capsid protein from forming cylinders in E.coli but not in a fully purified system (I.Groß, H.Hohenberg, C.Huckhagel and H.-G. Kräusslich, submitted).

Our amino-terminal capsid interface mutants also exhibited Gag assembly defects, which may have contributed to their reduced infectivity (as has been observed previously, e.g. Kaplan et al., 1993; Pettit et al., 1994; Fouchier et al., 1997). Thus, our data are consistent with the hypothesis that the amino-terminal end of capsid also participates in important Gag–Gag interactions in the immature virion. The amino-terminal end of CA is clearly not the only region of Gag that is important for HIV-1 assembly, however, because even more severe viral assembly defects can be caused by mutations in other Gag domains, including MA (e.g. Kräusslich and Welker, 1996; Cannon et al., 1997), the carboxy-terminal domain of CA (e.g. Dorfman et al., 1994; Reicin et al., 1995, 1996) and NC (e.g. Jowett et al., 1992; Dorfman et al., 1993). Rather, it appears that Gag makes multiple cooperative interactions along its length, allowing the Gag and Gag–Pol proteins to assemble efficiently, while excluding prematurely processed Gag proteins.

One of the most intriguing aspects of HIV-1 maturation is that Gag proteolysis switches capsid from a protein that participates in spherical particle assembly to one that assembles into a cone. Our experiments, and those of others (I.Groß, H.Hohenberg, C.Huckhagel and H.-G. Kräusslich, submitted), demonstrate that this switch can be mimicked in vitro simply by adding or removing as few as four matrix residues from the amino-terminus of the capsid protein. The MA residues apparently play an indirect role in controlling the capsid structure by inhibiting formation of the CA Pro1–Asp salt bridge prior to cleavage at the MA–CA junction and causing the amino-terminal end of capsid to adopt different structures before and after proteolysis. Thus, our experiments localize a key determinant of retroviral core morphogenesis to the amino-terminal end of capsid (assuming that capsid assembly in vitro is a valid model for HIV core morphogenesis).

We speculate that the transformation from spheres to cylinders involves converting a trimeric capsid interface to a dimeric interface. We hypothesize that HIV-1 Gag initially assembles using at least one 3-fold symmetric interaction, because the matrix protein preferentially forms trimers in the solid state (Rao et al., 1995; Hill et al., 1996), and because others recently have reported that the immature Gag protein forms lattices that exhibit both dimeric and trimeric interactions (Fuller et al., 1997; Barklis et al., 1998). In contrast, both of the crystallographically defined CA–CA interfaces of the mature capsid protein have 2-fold symmetry axes (the amino-terminal interface described herein and the carboxy-terminal dimer interface described in Gamble et al., 1997). Hence, converting spheres (immature virions) to cylinders (mature virions) may involve reducing the oligomeric state of the amino-terminal capsid interface from three to two.

The apparent conservation of the putative Pro1–Asp (Glu) salt bridge suggested to us that analogous mechanisms for proteolytic refolding of capsid might be utilized across the onco- and lentiviruses. Consistent with this.
model, we found that mutation of the conserved capsid Asp residue also blocked replication of the oncovirus MMLV. Campbell and Vogt (1997) have shown, however, that a MA–CA–NC fusion protein from Rous sarcoma virus (lacking the natural p10 domain between MA and CA) can assemble into cylinders in vitro in the presence of RNA, despite the absence of a free CA amino-terminus. This experiment may imply that different retroviruses behave differently, and/or that other regions of Gag can also play a role in determining capsid assembly properties. Indeed, dramatically different core morphologies are observed for different retroviruses (e.g. spheres, cones and cylinders), demonstrating that the detailed CA–CA interactions that determine the core morphology must differ. Nevertheless, it seems likely that the underlying organization of core assembly will be conserved, particularly given the apparent conservation of key sequences in both the amino- and carboxy-terminal domains of retroviral capsid proteins (e.g. McClure, 1991; Wills and Craven, 1991; and Figure 9). We have demonstrated recently that the cylinders formed in vitro by the HIV-1 capsid protein are helical (J.Finch, S.Li, V.Klishko, C.P.Hill and W.I.Sundquist, in preparation) and speculate that all viral cores will exhibit helical arrays of capsid, perhaps differing in how the helices distort to accommodate the viral RNA genome (Campbell and Vogt, 1995).

It is increasingly clear that retroviral maturation proceeds via a highly ordered pathway (Mervis et al., 1988; Erickson-Viitanen et al., 1989; Göttinger et al., 1989; Gowda et al., 1989; Titch et al., 1991; Pettit et al., 1994; Kräusslich et al., 1995; Wiegers et al., 1997). This is perhaps not surprising, given that the viral core assemblies de novo at very high Gag protein concentrations (>5 mM in the virion), where non-specific aggregation may pose a significant problem. The rates of cleavage at the different HIV-1 Gag processing sites differ considerably (Mervis et al., 1988; Erickson-Viitanen et al., 1989; Gowda et al., 1989; Kräusslich et al., 1989; Pettit et al., 1994), and these differences may serve to release various Gag domains as they are needed for assembly of the mature virion. Consistent with this model, viral maturation arrests at morphologically distinct stages when the different Gag processing sites are blocked (Wiegers et al., 1997). The first step of viral maturation is cleavage of Gag at the p2–NC junction, which presumably liberates the NC–RNA complex to condense into the central ribonucleoprotein particle. The MA–CA junction is cleaved at an intermediate rate, releasing capsid from the membrane-bound matrix domain. Our work shows that this cleavage event also refolds the capsid amino-terminus and allows formation of a new CA–CA interface that is essential for assembling the mature capsid core. Finally, processing at the CA–p2 junction frees the capsid carboxy-terminus and allows core assembly to proceed to completion (Pettit et al., 1994; Kräusslich et al., 1995).

In summary, our work has defined an essential step along the HIV-1 maturation pathway. Analogous mechanisms for capsid maturation appear to be conserved across the major genera of retroviruses. This work also identifies an attractive new target of known structure for the development of novel drugs to block HIV-1 replication.

Materials and methods

Expression and purification of recombinant capsid proteins

We have previously described the cloning, mutagenesis and expression of HIV-1 CA, CA151 and CA146 from pET3a and pET11a expression vectors in BL21(DE3) cells (Studier et al., 1990; Gitti et al., 1996; Yoo et al., 1997). Analogous mutagenesis and cloning procedures were used to introduce DNA encoding the MA–CA and mutant CA151 proteins into pET11a expression vectors.

Wild-type and mutant CA proteins were purified as described previously (Yoo et al., 1997). The MA–CA proteins (MA28–CA, MA2A–CA and MA2–CA) were expressed and purified as follows. All steps in the purifications were performed at 4°C, and all buffers were pre-treated with 1 mM phenylmethylsulfonyl fluoride (PMSF) to minimize proteolysis. MA–CA was purified from 2 l of cultured E.coli 4 h after induction of protein expression with 1 M isopropyl-β-D-thiogalactopyranoside (IPTG). Cells were harvested and resuspended in 40 ml of buffer A [25 mM Tris–HCl (pH 8.0), 5 mM β-mercaptoethanol (β-ME), 1 tablet of protease inhibitor cocktail (Boehringer Mannheim)] containing 50 mM NaCl. Cells were lysed by two passes through a French press, then sonicated to reduce viscosity. Insoluble material was removed by centrifugation at 40 000 g for 1 h. Crude MA–CA protein was precipitated by the addition of saturated ammonium sulfate to a final concentration of 40% (v/v), stirred on ice for 45 min and collected by centrifugation at 10 min for 3000 g. The pellet was redissolved in 30 ml of buffer A, dialyzed against 1 l of buffer A and chromatographed on Q Sepharose (Pharmacia) using a 400 ml linear gradient from 0 to 1 M NaCl in buffer A. The protein eluted at ~300 mM NaCl and was dialyzed overnight against buffer A containing 0.5 M ammonium sulfate. The protein was then chromatographed on phenyl Sepharose (Pharmacia) using a 200 ml linear gradient of 0.5–0 M ammonium sulfate in buffer A. The pure protein eluted during an extended wash with 0 M ammonium sulfate.

The procedure used to purify MA28–CA151 was the same as for the full-length MA–CA proteins, with the addition of a third chromatographic purification step. Following phenyl Sepharose chromatography, the protein was dialyzed into buffer C [25 mM KMOOPS (pH 6.8), 5 mM β-ME] and chromatographed on S Sepharose (Pharmacia) using a 400 ml linear gradient of 0–1 M NaCl in buffer C. Pure protein eluted at ~300 mM NaCl.

Purification of wild-type and mutant CA151 and MA2–CA146 proteins was the same as that used for the MA–CA proteins through the first column. The proteins eluted from Q Sepharose (Pharmacia) at ~450 mM NaCl and were dialyzed overnight against 2 l of buffer D [25 mM sodium phosphate (pH 7.2), 5 mM β-ME]. The proteins were rechromatographed on Q Sepharose in buffer D and eluted with the void volume at this lower pH. The CA151 proteins were pure at this stage, whereas the MA2–CA146 was chromatographed additionally on phenyl Sepharose (Pharmacia) using a 200 ml linear gradient of 0.5–0 M ammonium sulfate in buffer A. The pure protein eluted during an extended wash with 0 M ammonium sulfate.

Following purification, all proteins were dialyzed into the desired buffer(s) and concentrated as necessary by centrifugal filtration through a Centricon filter (Amicon). All proteins were isolated in yields of at least 10 mg/ml M9 minimal medium, and their purities and identities were confirmed by SDS–PAGE, amino acid sequencing and mass spectrometry. MA28–CA, MA2A–CA, MA2–CA, MA28–CA151 and MA2–CA146 all retained non-native initiator methionine residues at their amino-termini. In contrast, all recombinant CA and CA151 proteins had lost their amino-terminal methionines during expression and thus corresponded exactly to the authentic CA sequence.

HIV-1 capsid protein assembly in vitro

CA cylinders and MA–CA spheres were assembled in vitro under the following conditions: 400 μM protein, 50 mM Tris–HCl (pH 8.0), 1 M NaCl. The mixture was incubated for 1 h at 37°C and prepared for TEM. For negatively stained TEM images, the assembled particles were adsorbed to Formvar carbon-coated copper grids by floating the grids on a drop of each sample for 30 s. The grids were rinsed with three drops of 0.1 M KCl, touched to Whatman filter paper, rinsed with three drops of saturated uranyl acetate and dried on Whatman filter paper. For thin-section TEM images, particles were collected by centrifugation in a microfuge at 13 000 rpm for 1 h. Protein pellets were fixed for 12 h in 2.5% glutaraldehyde/1% paraformaldehyde in cacodylate buffer and prepared for thin-section TEM as described below for HIV-1 virions. Transmission electron micrographs were taken at magnifications of 20 000× or 80 000×.
NMR spectroscopy
NMR samples of wild-type and mutant 15N-labeled CA151, MA4–CA146 and MA28–CA151 proteins were 1–2 μm in 25 mM sodium phosphate buffer (pH 5.5) with 2 mM dithiothreitol (DTT) and 10% D2O. NMR spectra were collected at 25°C on a 500 MHz Varian Unity spectrometer operating at 499.88 MHz using a Nalorac IDT500 [1H, 15N, 13C] triple resonance probe with z-axis pulsed-field gradients. Two-dimensional 1H, 15N HSQC spectra (Bodenhausen and Ruben, 1980; Kay et al., 1992) were uniquely assigned to the nearest unshifted residue. The effect of the capsid D63A mutation on MMLV replication was assessed by transducing 4×104 cells with wild-type and mutant viruses at levels equivalent to 1×106 c.p.m. of reverse transcriptase activity or 100 ng of p24. Cells were grown in RPMI with 10% fetal calf serum, glutamine and penicillin/streptomycin. Supematant samples were collected from the infected cultures every 1–3 days, and cells were split 1:2 or 1:3 afterwards as necessary. SupT1 and CEM cells were obtained from the NIH AIDS Research and Reference Reagent Program, and H9 cells were obtained from Dr D.Trono.

Viral infectivity in a single-round infection assay (MAGI assay) was quantified in 24 well plates with LTR-β-gal cells (Chen et al., 1994) as described previously (Kang and Emile, 1992). P4 cells carry the β-galactosidase gene under the control of the HIV-1 long-terminal repeat which is activated by Tat protein synthesized from the infecting virus. Thus, infected cells express β-galactosidase and stain blue with Xgal. Infected cells were counted after 48 h, with infectivity reported as the number of blue cells per ng of p24 of input virus.

MMLV replication assays
The effect of the capsid D63A mutation on MMLV replication was assessed in a single replication cycle using the pCL packaging vector system (Naviaux et al., 1996). Infectious titers in NIH 3T3 cells (from Dr Mark Meuth, University of Utah) were determined by transducing 4×104 cells overnight with serial dilutions of the retroviral vector in the presence of 8 μg/ml polybrene, and fixing and staining the cells with Xgal 48 h later (Naviaux et al., 1996). Wild-type titers of undiluted supernatants were 5×106 and 6×106 infectious particles/ml in two independent experiments. The MMLV pCLeco packaging system was obtained as a generous gift from Dr R.Naviaux, UCSD, San Diego and Dr I.Verna, Salk Institute, La Jolla.

Western blotting
Virus from the supernatants of transfected cells was pelleted through a 20% sucrose cushion in a microcentrifuge for 90 min at 13 000 r.p.m. and resuspended in 25 μl of SDS gel loading buffer. Samples (2 μl) were separated by 12% PAGE, transferred, blocked, blotted with antisera, and protein bands were detected by enhanced chemiluminescence (DuPont) as described (von Schwedler et al., 1993). Primary antibodies used were: a murine anti-reverse transcriptase monoclonal antibody at 1:500 [obtained from Dr Stephen Hughes through the NIH AIDS Research and Reference Reagent Program, cat. #3483 (Ferris et al., 1990)], monoclonal antibody CA76C against HIV-1 CA [NIH AIDS Research and Reference Reagent Program, cat. #567 (Page et al., 1991)] and a goat anti-MMLV p30 at 1:2000 (obtained from Dr John Elder, Scripps Institute, La Jolla). Horseradish peroxidase-conjugated secondary antibodies were as follows: anti-rabbit peroxidase-conjugated secondary antibodies were as follows: anti-rabbit at 1:4000 (Amersham), anti-mouse at 1:1000 (Cappel), anti-sheep at 1:5000 (Cappel) and anti-goat at 1:4000 (Jackson ImmunoResearch).

Transmission electron microscopy
The virus-containing supernatants of transfected cells were adjusted to 50% fetal calf serum and 2.5% glutaraldehyde in cacodylate buffer [0.1 M sodium cacodylate (pH 7.4), 35 mM sucrose, 4 mM CaCl2] and centrifuged in a microfuge at 13 000 r.p.m. for 90 min at 4°C. The supernatants were aspirated, and the pellets were fixed further in 100 μl of 2.5% glutaraldehyde in cacodylate buffer at 4°C overnight. The pellets were washed thoroughly with buffer, post-fixed for 60 min with 2% v/v 1% OsO4 buffered in cacodylate (pH 7.4) and embedded in Epon 812. Semi-thin sections were cut at 1 μm and stained with toluidine blue (pH 4.0). Thin sections were cut at 50–80 nm and contrasted with uranyl acetate and lead citrate. Sections were observed using a JEOL 1210 transmission electron microscope.

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence</th>
<th>Annelling site</th>
<th>New restriction site</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 Q7,9A</td>
<td>CAGAACCTCGGGGGCCATGCTGATCCTG</td>
<td>9–37</td>
<td>StyI</td>
</tr>
<tr>
<td>HIV-1 A22D</td>
<td>GTAGAATTGATATGGGATGTAAGGTATTG</td>
<td>50–80</td>
<td>NsiI (destroyed)</td>
</tr>
<tr>
<td>HIV-1 E8,29A</td>
<td>AAAGTTAGAAGAGAGACCTTCTTTTCTTCTTC</td>
<td>73–96</td>
<td>EcoRI</td>
</tr>
<tr>
<td>HIV-1 M39D</td>
<td>CCGAGAAGACTTACCTACGGGTTTACAACTGG</td>
<td>106–147</td>
<td>EcoRV/III</td>
</tr>
<tr>
<td>HIV-1 A22D</td>
<td>CCGAGAAGACTTACCTACGGGTTTACAACTGG</td>
<td>112–141</td>
<td>BgII</td>
</tr>
<tr>
<td>HIV-1 D51A</td>
<td>CCAGAACGAGCTTAATACC</td>
<td>143–162</td>
<td>EcoRV/III</td>
</tr>
<tr>
<td>MMLV D63A</td>
<td>GCGCTTCTCTGCTCCTTACAGAAGGCCC</td>
<td>1304–1334</td>
<td>BssHI</td>
</tr>
<tr>
<td>MMLV PsFl</td>
<td>TTCGCTGCTGAGAAAGTTCG</td>
<td>732–745</td>
<td>–</td>
</tr>
<tr>
<td>MMLV Xhol</td>
<td>GTCTGCGGCTCGGAGGGG</td>
<td>1574–1557</td>
<td>–</td>
</tr>
</tbody>
</table>

α Nucleotide position in the HIV-1 ∆L4,3 capsid gene (with the Pro1 codon nt 1–3).

β Nucleotide position within MMLV plasmid pS2.2B (Sitbon et al., 1995).
OsO4 in buffer, rinsed with buffer and water, stained en bloc for 30 min with a saturated aqueous solution of uranyl acetate (~3%, pH 4), dehydrated in a graded acetone series and embedded in epoxy resin EMB-1812 (Electron Microscopy Sciences). Thin sections (60–90 nm) were picked up on copper grids, stained for 20 min on drops of saturated uranyl acetate, rinsed with water, touched to Whatman filter paper, then stained for 10 min on drops of Reynolds’ lead citrate in the presence of NaOH pellets (Reynolds, 1963), rinsed with water and dried on Whatman paper. Electron micrographs were taken on a Hitachi H-7100 transmission electron microscope at an accelerating voltage of 75 kV and a magnification of 50 000×.

Acknowledgements

We thank Chris Hill, Theresa Gamble and Sanghee Yoo for helpful discussions on the structural basis for capsid assembly; Maureen McMurray, Hui Wang and Nancy Chandler for technical assistance; and Eric Barklis and Hans-Georg Kraüsslich for preprints of their work. We also thank Hans-Georg Kraüsslich for sharing his experimental results on the assembly of MA–CA fusion proteins prior to publication. This work was supported by NIH grants RO1 AI40333, RO1 AI37524 (to W.I.S.) and S10 RR10489 (to K.H.A.).

References

Louveaige, J. et al. (1993) Phylogenetic analysis of gag genes from 70 international HIV-1 isolates provides evidence for multiple genotypes. AIDS, 7, 769–780.

Received November 14, 1997; revised and accepted January 19, 1998.