Adenovirus type 5 fiber knob binds to MHC class I α2 domain at the surface of human epithelial and B lymphoblastoid cells

Saw See Hong, Lucie Karayan, Jeannette Tournier, David T.Curiel1 and Pierre A.Boulangér2

Laboratoire de Virologie et Pathogénie Moléculaires (CNRS URA 1487), Institut de Biologie, Faculté de Médecine, 34060 Montpellier, France and 2Gene Therapy Program, Comprehensive Cancer Center, University of Alabama, Birmingham, AL 35294, USA

© Oxford University Press

Introduction

The apical projection of the capsid of human adenoviruses, the fiber, is a highly asymmetrical molecule visible under the electron microscope. Its sequence, of ~580 amino acids in subgroup C adenoviruses, e.g. serotypes 2 or 5 (Ad2, Ad5), consists of three structural domains: (i) the N-terminal tail (amino acids 1–46 in Ad2), which interacts with the penton base, (ii) the shaft (amino acids 47–400) constituted of repeat motifs, and (iii) the spherical knob (or head), which contains the C-terminus and interacts with the host cell surface receptors (reviewed in Chroboczek et al., 1995). The knob domains of Ad5, Ad2 and Ad3 fibers (including the shaft–knob junction) have been cloned and expressed in bacteria, insect and human cells, and all were found to occur as trimers. This confirms that signals essential for fiber trimerization are localized at the C-terminal extremity of the fiber protein as well as in the last shaft repeat (Novelli and Boulangér, 1991a,b; Hong and Engler, 1996). The isolated fiber knob retained its full cell-binding capability (Henry et al., 1994; Louis et al., 1994; Stevenson et al., 1995).

It is generally accepted that the entry of Ad into susceptible cells is a stepwise process, consisting of (i) an initial attachment of the virion to the cell surface via the fiber, followed by (ii) a phase of endocytosis, implicating membrane components such as α5β1 and αvβ3 integrins and the five conserved RGD motifs of the penton base (Varga et al., 1991; Bai et al., 1993, 1994; Belin and Boulangér, 1993; Greber et al., 1993; Wickham et al., 1993, 1994, 1995; Cuzange et al., 1994; Mathias et al., 1994; Nemerow et al., 1994; Sprengel et al., 1994; Goldman and Wilson, 1995; Greber and Kasamatsu, 1996). The two events can be experimentally dissociated, taking advantage of the observation that at low temperature (0–4°C) only virus–cell attachment occurs, whereas endocytosis requires 37°C (Philipson et al., 1968; Lenberg-Holm and Philipson, 1969; Svensson and Persson, 1984; Svensson, 1985; Wohlfart, 1988; Defe et al., 1990). In the two-step model, the fiber distal knob is considered as the domain which is responsible for the primary event of binding of the virions to the host cell plasma membrane receptor(s). Experimental data suggest that at least two distinct families of fiber receptors are involved in Ad–cell recognition, one specific for the subgroup C members (Ad2 and Ad5), and another one for the subgroup B (Ad3 and Ad7; Defe et al., 1990; Stevenson et al., 1995). The total number of cell binding sites for Ad2 has been estimated to range between 5×103 and 10×103 at the surface of HeLa cells (Persson et al., 1985; Defe et al., 1990), consisting of two types of receptors with high and low affinity, respectively (Persson et al., 1985; Seth et al., 1994).

The goal of the present study was to identify the cell-binding domain of the Ad5 fiber knob, and the complementary peptide motifs of host cell surface proteins which recognize the fiber knob during the event of virion attachment. To this aim, we used a novel approach, based on a method of reverse antibody biopanning of a filamentous phage-displayed random hexapeptide library, with two virus-neutralizing monoclonal antibodies (mAbs 7A2.7 and 1D6.3) raised against the recombinant Ad5 fiber knob. Their epitopes were localized to two contiguous discrete regions, one of which (1D6.3) belonged to the domain of the knob structure which has been postulated to face the cell receptor (R-sheets; Xia et al., 1994). As
Ad5 fiber knob receptor

suggest that a segment of MHC-I α2, which is conserved between all HLA alleles, is involved in the primary binding of Ad5 to HeLa cells (fiber receptor), and that FNIII modules carried by other membrane components would act as auxiliary receptors or binding co-factors.

Results

mAbs 1D6.3 and 7A2.7 blocked the attachment of Ad5 to HeLa cells

The reactivity of 1D6.3 and 7A2.7 against recombinant fiber knobs expressed in insect cells was first analyzed by enzyme-linked immunosorbent assay (ELISA). They were found to react with native Ad5 knob (F5-AT386), but not with SDS-denatured F5-AT386 or with Ad2 or Ad3 knobs (not shown), suggesting that they recognized serotype-specific and conformation-dependent epitopes. Both 1D6.3 and 7A2.7 neutralized Ad5 with a high efficiency (data not shown). In a former antigenic analysis of Ad2 fiber (Watson et al., 1988), it has been reported that two anti-knob neutralizing mAbs out of 14 failed to inhibit Ad2-induced hemagglutination, implying that neutralization by anti-knob antibodies could result from several mechanisms, and not only from inhibition of virus attachment.

In order to determine whether the Ad5 neutralization effect was due to blocking at the fiber knob receptor-binding site, 1D6.3 and 7A2.7 were tested for their inhibitory effect on Ad5–cell attachment. This was carried out using 14C-labeled Ad5 virions in a microbinding assay with in situ autoradiography of virus-exposed HeLa cells (Figure 2a–d), and in a conventional binding assay with counting cell-adsorbed radioactivity (Figure 2e). In the presence of irrelevant mAb (Figure 2a), a dark halo of reduced silver grains was visible around the cells on which virions had adsorbed. This was expected, since the 14C isotope is a relatively high energy photon emitter (Masse, 1976). In the presence of mAb 1D6.3 or 7A2.7, the number of silver grains associated with and around the attachment protein decreased in a mAb concentration-dependent manner (Figure 2b–d), a result confirmed by the cell-bound radioactivities (Figure 2e). 1D6.3 was slightly more efficient than 7A2.7 in virus-binding inhibition at the same mAb concentration (Figure 2e). These results indicated that neutralization of Ad5 by 1D6.3 and 7A2.7 resulted from the specific blockage of virus–cell attachment, and not from the inhibition of an intracellular event.

Identification of the 1D6.3 and 7A2.7 epitopes on the fiber knob

Since peptide scanning has been found to be inadequate to map conformational epitopes in fiber knobs (Fender et al., 1995), a phage-displayed hexapeptide library was biopanned on the anti-knob mAbs, and the hexapeptide motifs (phagotopes) carried by the eluted phages were determined by DNA sequencing. Although mAbs 1D6.3 and 7A2.7 reacted with conformation-dependent epitopes, we assumed that there would be sufficient contiguous amino acids in the phagotopes to be able to recognize specific motifs in the Ad5 knob sequence, as previously found for penton base mAb (Hong and Boulanger, 1995). As shown in Figure 3, mAbs 1D6.3 and 7A2.7 behaved as two independent clones, which mapped to two adjacent
three phagotopes contained a histidine next to a serine (GISHTG and GASHTV), and a homologous sequence was found in the Ad5 knob, as QSAHLI455. On the N-terminal side of this peptide sequence, the motif LAPIS was represented in several phagotopes as L-P, VAP-S and LIPF(N). In the Ad2 fiber knob, a similar region, within residues 459–470, has also been identified as an Ad2 neutralization domain (Fender et al., 1995).

Likewise, the 7A2.7 epitope was mapped to the region within residues 473–486, and453QSAHLI458. On the sequence analysis, proline was represented four times and tryptophan and histidine eight times out of 15 phagotopes, and association of two aromatic residues in the same phagotope was found five times (Figure 3). It seemed, therefore, that in the 7A2.7 epitope, a proline residue, such as P475, would be in the close vicinity of a cluster of aromatic residues, such as 477YWNF481.

According to the fiber knob three-dimensional model recently proposed (Xia et al., 1994), both epitopes occupy spatially contiguous regions. The 1D6.3 epitope spanned part of the CD loop and the β-strand A, whilst the 7A2.7 epitope was localized to the adjacent segment DE and the two β-strands E and F. The 1D6.3 epitope falls within the R-sheets, i.e. the knob domain facing the cell receptor (Xia et al., 1994), while the 7A2.7 epitope is oriented more laterally from the R-sheets.

Elution of phages from the fiber knob by competition with mAbs

The phage library was biopanned on immobilized Ad5 fiber knob, and knob-adsorbed phages were then eluted using 1D6.3 and 7A2.7 as soluble competitors in reverse ligand elution (Hong and Boulanger, 1995). The hexapeptide motifs identified belonged to two distinct classes (Figure 4).

The phagotopes yielded by competition with 7A2.7 had homology with motifs already isolated by biopanning on recombinant Ad2 fiber (Hong and Boulanger, 1995), and identified as consensus to peptide sequences of the human FNIII modules (Main et al., 1992; Dickinson et al., 1994). For example, ILWTPG, WYEWIG and WVIWSI, found in the 7A2.7 eluate (Figure 4a), were homologous to GLSIWN, FSWLVI, WSIASV and WWVIRD, recovered by acclination counting of cell-attached radioactive virus. Aliquots of Ad5 virions (10^5 c.p.m.) were adsorbed to 10^5 HeLa cells at 0°C for 1 h, in the presence of increasing concentrations of mAb 7A2.7, 1D6.3 or irrelevant mAb M2. Results were expressed as the percentage of virus adsorbed to cells in the absence of mAb (corresponding to ~5% of the total radioactivity input). Non-specific binding (NS) was evaluated by chasing labeled virus by a 50-fold excess of unlabeled virus (Defer et al., 1990; Wickham et al., 1993). This represented as much as 25% of the cell-bound virus. The values represented the average of three separate experiments in triplicate.

The second class of peptide motifs, found in the 1D6.3 eluate, showed a pattern of overlapping sequences which formed the consensus tetracosapeptide ARAIVGFRVQ-mAb 1D6.3 retained a variety of peptide phagotopes with overlapping residues, spanning the knob region between Val438 and Asp462. In spite of a certain degree of degeneration and scatter, a core motif, LAPISGTVQ-SAHLIRFD, centered on the bulky histidine residue at position 456, could be identified. Histidine was found repeatedly in several independent phage clones. Moreover, segments spanning 15–20 amino acid residues in the knob linear sequence.

mAb 1D6.3 retained a variety of peptide phagotopes with overlapping residues, spanning the knob region between Val438 and Asp462. In spite of a certain degree of degeneration and scatter, a core motif, LAPISGTVQ-SAHLIRFD, centered on the bulky histidine residue at position 456, could be identified. Histidine was found repeatedly in several independent phage clones. Moreover,
Ad5 fiber knob receptor

Fig. 3. Phagotopes recovered from biopanning of mAbs 1D63 (a) and 7A2.7 (b). The phagotope motifs are aligned with the corresponding knob sequence, residues of which are numbered from the initiator methionine of full-length Ad5 fiber. Regions in β-sheet structure (Xia et al., 1994) are underlined and marked by (D), (E) and (F). Identical or conserved residues in the sequences are indicated in bold face.

between Arg157 and Leu179 (Figure 4b). Some of the peptides isolated have already been identified as ligands of the Ad2 fiber (Hong and Boulanger, 1995), such as DRRYMP, which is homologous to RRYFVN found as the core motif of the MHC-I α2 consensus region.

Interactions of Ad fibers with FNIII module and MHC-I α2 in vitro and serotype specificity of the binding

To analyze further the possible role of FN and MHC class I molecules in fiber knob recognition, oligopeptide sequences homologous to the FNIII modules and MHC-I α2 domains were fused to GST, and used in in vitro binding assays with recombinant knobs and full-length fibers from different Ad serotypes. Thus, the pentadecapeptide RHILWTPANTPAMGY, homologous to the β-strand phage biopanning (Hong and Boulanger, 1995), is totally conserved between Ad serotypes 5, 2 and 3, and in most B and adjacent BC loop of the human FNIII module (Dickinson et al., 1994), was fused to the oligoglycine of the mammalian Ad serotypes (Chroboczek et al., 1995).

As shown in Figure 5, Ad5 fiber bound to GST–MHC linker at the C-terminus of GST, in single (GST–FN/1) or multiple (GST–FN/2 and GST–FN/3) motifs in tandem. Likewise, the icosapeptide RAIVGFRVQWLRRYFVNGSR, which was consensus to the sequence of 15-fold higher efficiency than Ad3 fiber. The efficiency of binding of recombinant fiber to GST-fused MHC- or the MHC-I α2 within residues 157–176 (Bjorkman and Parham, 1990), was fused to GST, and the resulting fusion proteins were referred to as GST–MHC×1, GST–MHC×2 and GST–MHC×3, according to the number of copies of inserted motif.

The different fusion proteins were incubated in vitro with recombinant fiber knobs of serotypes 5 (F5-AT386), 2 (F2-AT388) and 3 (F3-AT124) respectively, and complexes, isolated by affinity to glutathione–agarose beads, were analyzed by SDS–PAGE and immunoblotting. GST–FN×1, GST–FN×2 and GST–FN×3 were found to bind to F5-AT386 and F2-AT388 proteins with a high efficiency, whereas F3-AT124 was retained at much lower levels (not shown). A similar pattern was observed with GST-fused MHC-I α2-derived oligopeptides GST–MHC×1, GST–MHC×2 and GST–MHC×3, which retained F5-AT386 and F2-AT388 in significantly higher yields than F3-AT124 (not shown).

In vitro binding assays were also performed using recombinant full-length fibers of Ad5 (F5-FL581), Ad2 (F2-FL582) and Ad3 (F3-FL320). The amount of GST–oligopeptide-bound fiber could be quantitated in immunoblot by using anti-fiber tail mAb 4D2.5 (Hong and Engler, 1991), since the 4D2.5 epitope, FNPVYP, determined by fibers from different Ad serotypes. Thus, the pentadecapeptide RHILWTPANTPAMGY, homologous to the β-strand phage biopanning (Hong and Boulanger, 1995), is totally conserved between Ad serotypes 5, 2 and 3, and in most B and adjacent BC loop of the human FNIII module (Dickinson et al., 1994), was fused to the oligoglycine of the mammalian Ad serotypes (Chroboczek et al., 1995).

As shown in Figure 5, Ad5 fiber bound to GST–MHC and GST–FN fusion proteins with a significantly higher affinity than Ad2 fiber (2- to 3-fold), and with a 10- to 15-fold higher efficiency than Ad3 fiber. The efficiency of binding of recombinant fiber to GST-fused MHC- or FNIII-derived peptides did not increase in parallel to the number of motifs present in the fusion protein, and, in some cases, slightly decreased between one single and two or three motifs in tandem (Figure 5). This suggested that in some constructs, tandem motifs could adopt a conformation which was detrimental to the knob binding, and that only one single molecule of fiber could bind per GST-fused oligopeptide bait provided to the incubation...
Fig. 4. (a) mAb 7A2.7-competed phagotopes, and (b) sequence alignment of consensus 7A2.7-eluted sequence with some FN type III modules (Dickinson et al., 1994). (c) 1D6.3-competed phagotopes, and (d) consensus 1D6.3-eluted sequence, tentatively aligned with the consensus MHC class I heavy chain α2 domain (Bjorkman and Parham, 1990) around tryptophan residue 167 (underlined). Conserved residues at analogous positions are in bold face. Hyphens were introduced to maximize the alignment.

mixture, probably due to steric hindrance of the bulky α2 domain.

Binding of Ad5 fiber monomer to GST-fused FNIII- and MHC-I α2-derived peptides

Fiber mutant F5-dl314–402, carrying a 90 amino acid deletion spanning the shaft and the shaft–knob junction (including the conserved TLWT motif; Chroboczek et al., 1995), occurred in monomeric form when expressed as recombinant protein in baculovirus-infected cells (our unpublished data). Recombinant fiber mutant F5-dl314–402 was thus tested for its ability to bind to GST-fused FNIII- and MHC-I α2-derived peptides. Both fusions were found to bind to the F5-dl314–402 mutant in vitro with almost the same efficiency as wild-type Ad5 fiber (Figure 5). This implied that the FNIII module and the MHC-I α2 had similar affinity for fiber knob monomers and trimers, suggesting that they did not recognize trimer-dependent peptide motifs.

Interference of FNIII- and MHC-I α2-derived synthetic peptides with Ad5 in vivo

Two icosapeptides, RHLWTPAMGYNLVARS (FN20) and RAIVGRQLRRLYFVNGSR (MH20), which reproduced the consensus sequence of 7A2.7- and 1D6.3-eluted phagotopes, respectively (Figure 4), were synthesized and assayed for their effect on Ad5Luc3 infection of HeLa cells in vitro with almost the same efficiency as wild-type Ad5 fiber (Figure 5). This implied that the FNIII module and the MHC-I α2 had similar affinity for fiber knob monomers and trimers, suggesting that they did not recognize trimer-dependent peptide motifs.
FN20 molarities, with a 5-fold increase at 50 μM compared with 5 μM, and a 20-fold increase between 5 and 100 μM (Figure 6a). By contrast, MH20 showed an apparent 4-fold augmentation of luciferase activity at 5 μM, but an almost total abolition of the enzyme expression at 25 μM (Figure 6b).

The biological effects of FN20 and MH20 were then analyzed at increasing peptide molarities and constant m.o.i. (0.16 f.f.u./10⁵ cells), a m.o.i. value chosen in the linear range of virus dose–luciferase response (refer to Figure 6). For FN20, no significant effect was observed for molarities up to 10 μM, but a progressive increase in luciferase activity occurred over 25 μM, with a 100-fold increase between 25 and 500 μM (Figure 7a). With MH20, there was a discrete augmentation of luciferase gene expression for molarities ranging from 0.05 to 2.5 μM, with a 5- to 6-fold higher level at 2.5 μM. This was followed by a rapid decrease of luciferase levels for molarities >5 μM, with a four orders of magnitude lower level than the control samples at 50 μM (Figure 7b). There was no apparent cytotoxicity of the two peptides in the molarity range used.

The fact that there was no significant influence of MH20 and FN20 peptides on Ad5Luc3 transgene expression, once the virus was pre-attached or pre-endocytosed (Figure 7a and b), suggested that the observed effects occurred at the attachment step. In addition, the enhancing effect of FN20 on Ad5Luc3 expression was reproduced in a fiber–

Affinity of Ad5 fiber for FNIII- and MHC-Iα2-derived synthetic peptides

35S-labeled recombinant fiber F5-FL581 was titrated down a series of icosapetide-coated microtitration wells. A dissociation constant (K_d) of 3.0 ± 0.6 nM was found for MH20 and 8.0 ± 1.9 nM for FN20 (n = 3), as derived from classical Scatchard analysis (Scatchard, 1949). Values of 1.7 nM (Wickham et al., 1993) and 2.0 nM (Hong and Boulanger, 1995) have been reported for the K_d of the recombinant fiber and HeLa cell binding reaction.

MHC class I dependence of Ad5 attachment to human B lymphoblastoid cells

Daudi cell, an established B lymphoblastoid Burkitt’s lymphoma cell line, is deficient in the expression of β₂-microglobulin, and thus lacks HLA class I molecules at its surface (Daudi-HLA⁻). A Daudi-derived cell line (E8.1), which has been transfected with the β₂-microglobulin gene, expresses functional HLA class I at its surface (Daudi-HLA⁺; Quillet et al., 1988). Both Daudi-HLA⁻ and Daudi-HLA⁺ were assayed for attachment of radiolabeled Ad5. Ad5 was found to bind to Daudi-HLA⁺ cells with a 10-fold higher efficiency than to Daudi-HLA⁻ cells. The saturation curve obtained at 0°C showed a discrete sigmoidal curvature suggestive of some cooperative binding (Figure 9a). The Scatchard plot of the binding data with Daudi-HLA⁺ confirmed the cooperativity (Figure 9b). The values for the apparent association constant, K_a, ranged from 0.9 × 10¹⁰ to 2.3 × 10¹⁰/M, with an average of 1.4 ± 0.6 × 10¹⁰/M (K_a ± SD; n = 4) in terms of Ad5 molarity. This value was similar to the binding constants reported for Ad2 and HeLa (Persson et al., 1985; Seth et al., 1994) or KB cells (Defer et al., 1990). The intersection with the x-axis gave 4000 ± 500 receptors per cell, a value slightly lower than the number of Ad2 receptors at the surface of HeLa or Cos-7 cells, 10 000 and 12 000, respectively (Persson et al., 1985; Seth et al., 1994).
Fig. 7. Luciferase gene expression in HeLa cells infected with Ad5Luc3 at constant m.o.i. (0.16 f.f.u./10^5 cells), and in the linear range of RLU versus m.o.i. as determined in Figure 6. Ad5Luc3 was added to the cells pre-cooled at 0°C in the presence of increasing molarities of (a) FN20, ranging from 0 to 500 μM, or (b) MH20, ranging from 0 to 50 μM. Control curves corresponded to luciferase activity in HeLa cells incubated with FN20 or MH20 after Ad5Luc3 attachment (△), or after Ad5Luc3 endocytosis (□). In (b), the luciferase level detected at 50 μM MH20 represents the background activity in mock-infected HeLa cells (~50 RLU per 5 × 10^5 cells).

Functionality of Ad5 receptors in Daudi-HLA^+ cells

In order to determine whether the receptor sites present on Daudi-HLA^+ cells were functional in terms of virus life cycle, and could lead to virion endocytosis, nuclear transport and expression of the viral genome, Ad5Luc3 was adsorbed to Daudi-HLA^+ cells at 0°C and at increasing m.o.i., and luciferase assayed in cell lysates at 18 h after the temperature shift-up. As shown in Figure 10, the luciferase activity in Daudi-HLA^+ followed the Ad5Luc3 m.o.i. in a dose-dependent manner, and reached a plateau at >5 f.f.u./10^5 cells. The luminescent signal obtained with Daudi-HLA^+ was 3–4 orders of magnitude lower than with Daudi-HLA^+ cells.

To test whether the Ad susceptibility of Daudi-HLA^+ cells directly depended upon cell surface expression of HLA class I molecules, and not other cellular molecules co-transported to the plasma membrane, Ad5Luc3 was incubated with Daudi-HLA^+ cells at 0°C and 10 f.f.u./10^5 cells in the presence of various amounts of peptide MH20. The luciferase signal decreased progressively with increasing molarities of MH20, showing 50% inhibition at 40 μM, and 88% inhibition at 100 μM (data not shown), which confirmed the role of HLA class I molecules in Ad5Luc3 binding to Daudi-HLA^+ cells.
Discussion

Two mAbs raised against recombinant Ad5 fiber knob, 7A2.7 and 1D6.3, were found to neutralize Ad5 infection of HeLa cells via inhibition of virus attachment to the cell surface (Figure 2). They were thus used as immunological probes for fiber receptors, considered as the primary cell receptors of the virion (White, 1993). Their epitopes, identified by biopanning of a phage-displayed random hexapeptide library, were mapped to a region of the terminal knob spanning residues 438–486 in the fiber sequence (Figure 3). This corresponded to the CD loop and the D floor for 1D6.3, the adjacent DE segment and β-strands E and F for 7A2.7 (Xia et al., 1994). The same region of the knob has been proposed to be involved in Ad2 neutralization by anti-Ad2 fiber knob mAbs which recognize conformational epitopes (Fender et al., 1995). The β-strand D, included in the 1D6.3 epitope, has been assigned to the R-sheets of the knob which face the cell receptor (Xia et al., 1994).

Specific displacement of phages bound to immobilized Ad5 knob by 1D6.3 or 7A2.7 used as competing ligands yielded phagotopes which represented mimotopes of fiber knob-binding proteins (Figure 1). The mimotopes identified belonged to two distinct classes of ubiquitous cellular protein motifs. The phagotopes competed by 7A2.7 (Figure 4a) showed significant homology to motifs which have been isolated previously from Ad2 fiber, and identified as consensus to a region of human FNIII modules (Hong and Boulanger, 1995) corresponding to the β-strand B and adjacent BC loop (Main et al., 1992; Dickinson et al., 1994). In the 1D6.3 eluate, the pattern of overlapping phagotopes represented a consensus sequence which had 77% homology (17 identical or conserved residues out of 22) with the C-terminal portion of the human MHC-I α2 molecules, including Trp167 (Figure 4b). Little variability has been found in this particular region of the α2 domain among all HLA alleles (Bjorkman and Parham, 1990; Messer et al., 1992), and this accessible and conserved segment corresponds to a portion of the peptide-binding α-helices (Bjorkman and Parham, 1990). When fused to bacterially expressed GST protein, both FNIII module-derived and MHC-I α2-derived consensus oligopeptide sequences bound efficiently in vitro to recombinant fibers of Ad5 and Ad2, but not to fiber of Ad3 (Figure 5). Their capacity to bind to the recombinant shaft mutant F5Δ314–402, which failed to trimerize and accumulated as fiber monomers, suggested that the recognition of the FNIII module and MHC-I α2 by the Ad5 fiber knob was not trimer dependent.

Two icosaopeptides were synthesized: MH20, which represented the consensus mimotope of the MHC-I α2, and FN20, which represented the consensus mimotope of the FNIII module (Figure 4). Immobilized MH20 was found to bind to recombinant Ad5 fiber with a K_d of ~3 nM, a value which was close to the previously reported K_d for the binding reaction of recombinant fiber to HeLa cell receptors (1.7–2.0 nM; Wickham et al., 1993; Hong and Boulanger, 1995).

When assayed in vivo in HeLa cell binding competition with Ad5Luc3, FN20 showed no significant biological effect for molarities up to 10 μM, but a progressive augmentation of Ad5Luc3 attachment was observed at molarities >25 μM. The paradox of the positive effect of FN20, a peptide which was derived from the neutralizing mAb 7A2.7, is apparent: (i) the lateral position of the 7A2.7 epitope on the knob structure (Xia et al., 1994), compared with 1D6.3, is compatible with a function of binding to an auxiliary ligand; (ii) on the other hand, the 7A2.7 antibody molecules bound to their epitopes on the knob could impair, by steric hindrance, its attachment to the cell receptor. With MH20, the curve of biological activity was found to be biphasic: (i) at low molarities, an initial increase in the luciferase gene expression was observed, up to 5-fold at 2.5 μM; (ii) at higher molarities, between 10 and 25 μM, a negative effect was detected, followed by complete virus neutralization at 50 μM (Figures 6 and 7). This curve suggested some cooperativity of MH20 for the binding of the virus to its cell receptors. A discrete positive cooperative effect in Ad–cell binding has already been described (Persson et al., 1985; Defer...
Luciferase gene expression in Daudi-HLA– and Daudi-HLA/H11001 cells infected with Ad5Luc3 at varying m.o.i. (0.3–150 f.f.u./10^5 cells). Ad5Luc3 was added to the cells pre-cooled at 0°C for 1 h to allow virus attachment but not entry. After rinsing unadsorbed virus, the cells were resuspended in medium pre-warmed to 37°C, further incubated at 37°C for 18 h, then processed for luciferase assay. RLU values represent the average of three separate experiments with Daudi-HLA– (d) and Daudi-HLA/H11001 (s).

Our results suggest that the region confined to the CD loop, D strand, DE segment and EF β-strands of the Ad5 fiber knob recognizes at least two distinct HeLa cell plasma membrane ligands: (i) the MHC-I α2, and (ii) another, as yet unidentified, membrane protein containing one or several copies of the promiscuous FNIII module. MHC class I molecules have been found to serve as receptors for several viruses, including SV40 (Breau et al., 1992), mouse cytomegalovirus, lactate dehydrogenase virus and Semliki Forest virus (reviewed in Wimmer, 1994). The molecular mass of the MHC class I heavy chain (44 kDa) is compatible with that of plasma membrane protein species previously isolated by affinity chromatography on immobilized fiber or by cross-linking with adenovirions (Hennache and Boulanger, 1977; Svensson et al., 1981; Belin and Boulanger, 1993). mAb 39B6, directed against human FNIII repeats 12–14, mAb B9.12.1 and mAb W6/32, the two latter directed against monomorphic determinants of the human class I MHC heavy chains, were tested individually in inhibition assays of Ad5Luc3 attachment to HeLa cells. A slight negative effect (2- to 2.5-fold) on luciferase gene expression was observed (not shown), suggesting that none of the mAb epitopes overlap the sequences which bind to the fiber knob.

In virus neutralization assays, MH20 showed an efficient neutralization of Ad5 and Ad2, but not of Ad3 (Figure 8). The serotype specificity of Ad neutralization by MH20 peptide, as well as the serotype specificity of the in vitro interactions between fibers and GST–MHC-I α2 peptides (Figure 5) was consistent with previous studies showing that Ad2 and Ad5 share the same receptor, which is different from the Ad3 receptor (Defer et al., 1990; Stevenson et al., 1995). In the range of molarities of the two peptides used, no apparent cytotoxicity or inhibition effect on the expression of pre-attached or pre-endocytosed Ad5Luc3 was observed (Figure 7). This, and the fact that our assays were conducted at 0°C, a temperature which permits only virus attachment and not cell entry, implied that the observed biological effects occurred at the stage of virus attachment, and, more specifically, the binding of the knob to the fiber receptor.
fibrin have been identified as motifs present in ICAM-1 and LDLR (Hong and Boulanger, 1995). However, nothing is known about the functionality of these overlapping receptors with respect to the Ad life cycle, since competitive with cold and labeled viruses has only been studied at the attachment level, and since 10–25% of cell-associated Ad has been found to be blocked at the stage of plasma membrane attachment (Belin and Boulanger, 1993; Wickham et al., 1993). Further dissection of the mechanism of fiber–cell binding, and the nature of the protein partners involved at each discrete step will help the engineering of specifically cell-targeted adenoviral vectors (Michael et al., 1995; Krasnykh et al., 1996; Wickham et al., 1996) used for gene therapy.

After completion of this work, we were informed of a study on the expression of Ad2 fiber receptors at the surface of mouse cells. Transfer of human chromosome 21 to the murine A9 cell line unable to bind Ad2 fiber conferred to cell transformants a fiber-mediated Ad2-binding capacity similar to that of human epithelial cells (Mayr and Freimuth, 1997). Since human class I MHC α chain is encoded by chromosome 6 and the β2-microglobulin by chromosome 15, this would suggest that different plasma membrane components could serve as Ad2 and Ad5 fiber receptors in various cell contexts. Alternatively, human chromosome 21-encoded factor(s) could cooperate with or potentiate non-functional Ad2 fiber receptors in mouse cells. Interestingly, the gene coding for the integrin β2-chain is located in chromosome 21 (Springer, 1990), and hematopoietic cells, which lack fiber-binding activity, use α0β2 integrin as Ad2 receptor (Huang et al., 1996).

Materials and methods

Mammalian cells and adenoviruses

HeLa cells were grown as monolayers in Dulbecco’s modified Eagle’s medium (Gibco) supplemented with 10% heat-inactivated fetal calf serum (FCS), 1-glutamine and antibiotics. Duadi cells and β2-microglobulin DNA-transformed Duadi cells (Duadi-HLA A, E3.1 line, Quillet et al., 1988) were maintained in RPMI 1640 (Gibco) supplemented with 15% FCS. Wild-type Ad5 and recombinant Ad5Luc3 were both propagated in HeLa cells. Ad5Luc3, obtained from F.Graham, is a replication-competent virus, which contains the luciferase gene under the control of the SV40 early promoter inserted in the E3 region of the Ad5 genome (Mittal et al., 1993).

Insect cells and recombinant baculoviruses

The recombinant fiber knob domain and full-length fiber from three adenovirus serotypes, Ad2, Ad5 and Ad3, were expressed in Spodoptera frugiperda cells (SP), using recombinant Autographa californica nuclear polyhedrosis viruses (AcNPV). All our recombinant fiber proteins were expressed under the control of the polyhedrin promoter (Lucow and Summers, 1989), and the baculovirus intermediate transfer vector and cloning strategies have been described in detail previously (Novelli and Boulanger, 1991b; Karayam et al., 1994).

The baculovirus clone expressing the Ad2 knob was obtained from J.Chroboczek (Louis et al., 1994). It starts with a methionine residue at position 388, replacing an Ala residue in the wild-type Ad2 fiber sequence. To be consistent with our previous nomenclature (Novelli and Boulanger, 1991b), it was referred to as F2-AT388 in the present study, as it could be considered as an amino-truncated form of fiber reduced in virus-binding assays.

The two icosapeptides H2N-RHILWTPANTPAMGYLARVS-CO2H, The baculovirus clone expressing the Ad2 knob was obtained from J.Chroboczek (Louis et al., 1994). Both F5-FL581 and full-length Ad5 fiber (F3-FL320) genes were generated by PCR amplification using Ad5 and Ad3 DNA as templates, and the above-described reverse primers for the Ad5 knob (37mer) and Ad3 knob (30mer), respectively. The 30mer forward primer 5′-CCA GCC CCC ACT ATG ATC ACG TTG TTG-3 (nucleotides 31 021–31 050) for Ad5 contained three mismatches, two generating a BglII-compatible BclI site, and one suppressing the in-phase upstream ATG. The 31mer forward primer 5′-CTA TCT TTT CTT CAC CAC AGG AGT TAT AGG ATG C3′ for Ad3 contained two mismatches generating an Ncol site.

The internal deletion (del) mutant of Ad5 fiber, F5-d314–402, was constructed like F5-FL581, from plasmid pTG8522, obtained from Transgene (Strasbourg). pTG8522 carried a deletion in the Ad5 fiber gene, from residue 314 to 402, corresponding to 89 amino acids from the shaft and the shaft–knob junction.

GST fusion peptides

The FNIII-derived pentadecapeptide RHIWTYPNTAMGY was added in fusion to the C-terminal end of the bacterially expressed GST. The oligonucleotide 5′-TCG AGG AGT CAT ATA TCG ACT CCT GCT ATT ACA CCG GCA ATG GGG TAT G3′, and its complementary antisense oligonucleotide 5′-GAC ATA CCC CAT TGG TGT ATT AGG AGT CAA AAG TAT AGG C3′, were annealed and inserted into the unique Xhol site of the pGEX-KG plasmid (Guan and Dixon, 1991). The oligonucleotides were designed so as to regenerate the Xhol site at the 5′ end only if the insert was in the correct orientation. This allowed us to obtain sequentially longer constructs with single, tandem or multiple copies of the same insert in the restituted Xhol site. The final sequence of the C-terminus of the fusion protein containing one single insertion was GST-(Thrmonbin-site)-PGIS-(G)5-ILDMSRELE-

RHIWTYPNTAMGY-(XhoI site at the 5′ end only if the insert was in the correct orientation. This allowed us to obtain sequentially longer constructs with single, tandem or multiple copies of the same insert in the restituted Xhol site.

The two icosapeptides H2N-RHILWTPANTPAMGYLARVS-CO2H, The baculovirus clone expressing the Ad2 knob was obtained from J.Chroboczek (Louis et al., 1994). It starts with a methionine residue at position 388, replacing an Ala residue in the wild-type Ad2 fiber sequence. To be consistent with our previous nomenclature (Novelli and Boulanger, 1991b), it was referred to as F2-AT388 in the present study, as it could be considered as an amino-truncated form of fiber reduced in virus-binding assays.

The two icosapeptides H2N-RHILWTPANTPAMGYLARVS-CO2H, The baculovirus clone expressing the Ad2 knob was obtained from J.Chroboczek (Louis et al., 1994). It starts with a methionine residue at position 388, replacing an Ala residue in the wild-type Ad2 fiber sequence. To be consistent with our previous nomenclature (Novelli and Boulanger, 1991b), it was referred to as F2-AT388 in the present study, as it could be considered as an amino-truncated form of fiber reduced in virus-binding assays.

The two icosapeptides H2N-RHILWTPANTPAMGYLARVS-CO2H, The baculovirus clone expressing the Ad2 knob was obtained from J.Chroboczek (Louis et al., 1994). It starts with a methionine residue at position 388, replacing an Ala residue in the wild-type Ad2 fiber sequence. To be consistent with our previous nomenclature (Novelli and Boulanger, 1991b), it was referred to as F2-AT388 in the present study, as it could be considered as an amino-truncated form of fiber reduced in virus-binding assays.

The two icosapeptides H2N-RHILWTPANTPAMGYLARVS-CO2H, The baculovirus clone expressing the Ad2 knob was obtained from J.Chroboczek (Louis et al., 1994). It starts with a methionine residue at position 388, replacing an Ala residue in the wild-type Ad2 fiber sequence. To be consistent with our previous nomenclature (Novelli and Boulanger, 1991b), it was referred to as F2-AT388 in the present study, as it could be considered as an amino-truncated form of fiber reduced in virus-binding assays.
(1995). Fiber binding to synthetic peptides was assayed using a solid-phase method with MH20 and FN20 peptides immobilized on microtitration plates. The polystyrene surface of 96-well microtiter plates (Nunc Maxisorb) was coated overnight at 4°C with MH20 or FN20 to 5, 10, and 25 μM in phosphate-buffered saline (PBS). After rinsing and blocking with 1% bovine serum albumin (BSA) in PBS, and with increasing concentrations of radioactively labeled recombinant Ad5 fiber in PBS. Bound fiber was eluted with 1 M urea–1 M NaOH–1% SDS. Bound and unbound fiber were precipitated with 10% trichloroacetic acid (TCA), precipitated, and counted in a liquid scintillation spectrometer (Beckman LS-6500). Baculovirus-expressed F15-FL581 was labeled with both [35S]methionine and [3H]cysteine as previously described (Hong and Boulanger, 1995). The specific radioactivity of the samples used was 50 000–65 000 c.p.m. per μg protein.

Electrophoresis and immunoblotting

SDS-denatured proteins were analyzed by SDS-PAGE in 12.5% acrylamide gels (acrylamide to bisacrylamide ratio of 50:0.8), using a discontinuous buffer system (Laemmli, 1970). Electric transfer of proteins onto nitrocellulose membranes (Hybond-ECL, Amersham) was carried out in 25 mM Tris–192 mM glycine buffer, pH 8.3, containing 20% methanol, at 0.8 mA/cm² for 90 min, using a semi-dry method (Cambire Electrophoresis, Cambridge, UK). Blots were blocked with 5% skimmed milk and 1% calf serum in TBS-T buffer (20 mM Tris-HCl, pH 7.8, 0.1% Tween-20), then successively reacted with primary antibody and horseradish peroxidase-labeled, anti-FLAG conjugate. Immunological quantification of proteins was carried out as previously described (Chazal et al., 1995), using chemiluminescent peroxidase substrate (SuperSignal, Pierce Chemicals). Immunobots (Hyperfilm-Flash, Amersham) were scanned at 610 nm, using an automatic densitometer system (REP-EDC, Helena Laboratories, Beaumont, TX).

Antibodies

Rabbit antisera against Ad2 virion proteins (Boudin and Boulanger, 1982), against electrophoretically purified recombinant Ad2 fiber protein (Novelli and Boulanger, 1991b) and recombinant GST were all laboratory made. mAb 4D2.5, directed against fiber tail, was obtained from J.Engler (Hong and Engler, 1991). Mouse mAbs ID6.3 and 7A2.7 were raised against bacterially expressed Ad5 fiber knob fragment obtained from R.Gerard (Henry et al., 1994), and were used as hybridoma cell culture supernatants (Michael et al., 1993, 1995). Anti-FLAG M2 mAb (IBI) was used as control unrelated monoclonal antibody. Commercial mAbs against monomorphic epitopes of human class I HLA heavy chains were purchased from Immunootech (Marseille, France) for B9.12.1 (Malsen et al., 1982), and from Dako (Glostrup, Denmark) for W6/32 (Barnstable et al., 1978). mAb against anti-human fibronectin type II repeats 12–14 (clone 39B6) was obtained from Sorotec (Oxford, UK).

Interference with Ad–cell attachment and virus neutralization

Five different assays were used.

Neutralization assay

The virus neutralization titer of mAbs ID6.3 and 7A2.7 was determined by a conventional endpoint viral cytopathic effect (CPE) assay with crystal violet. In a standard procedure, wild-type Ad5 particles were incubated with hybridoma cell supernatant (undiluted to 1:128 dilution) in a total volume of 150 μl in culture medium for 30 min at room temperature, and the Ad–mAb mixture added to HeLa cell monolayers at 80% confluency (10⁷ cells) at an m.o.i of 10 p.f.u./cell. Results were expressed as the maximum dilution which completely abated adeno viral infection. Both ID6.3 and 7A2.7 neutralized Ad5 at 1:64–1:128 dilution.

Cell attachment assay of Ad5

Aliquots of [methyl-3H]hydridine-labeled wild-type Ad5 virions in PBS (specific activity of 10⁵ c.p.m. per 10⁴ virions) were added to HeLa cell monolayers at 80% confluency (10⁷ cells) at an m.o.i of 10 p.f.u./cell. Results were expressed as the maximum dilution which completely abated adeno viral infection. Both ID6.3 and 7A2.7 neutralized Ad5 at 1:64–1:128 dilution.

Cell attachment assay of Ad5

Aliquots of [methyl-3H]hydridine-labeled wild-type Ad5 virions in PBS (specific activity of 10⁵ c.p.m. per 10⁴ virions) were added to HeLa cell monolayers at 80% confluency (10⁷ cells) at an m.o.i of 10 p.f.u./cell. Results were expressed as the maximum dilution which completely abated adeno viral infection. Both ID6.3 and 7A2.7 neutralized Ad5 at 1:64–1:128 dilution.

Ad5–cell microbinding assay

mAb inhibition of Ad5–cell attachment was also assayed by using ³⁵Clabeled Ad5 virions and in situ cell autoradiography (Silver and Anderson, 1988). A constant input of ¹⁴C]valine-labeled Ad5 with a specific activity of 10⁵ c.p.m. per 5 × 10¹⁰ virions was adsorbed on semiconfluent HeLa cell monolayers at an input of 10⁵ virions per cell (corresponding to 10⁵ c.p.m. per 5 × 10¹⁰ cells) for 1 h at 0°C in the presence of mAbs at various concentrations. Cell samples were rinsed with PBS, fixed with 0.1% paraformaldehyde in PBS, dried, and covered with lidofor nuclear research emulsion K4 in gel for 1 week. After 1 week exposure at 4°C in light-proof boxes, the emulsion was developed using D19B developer (Kodak), and the specimens briefly colorized with 0.5% toluidine blue in H₂O and examined under the light microscope. The density of reduced silver grains around the cell contour gave an estimation of the number of cell-bound ³⁵Clabeled Ad5 virions.

Ad5Luc3 attachment assay

Inhibition of Ad5–cell attachment was estimated from the level of luciferase gene expression using the luciferase assay on Ad5Luc3-infected cells (Henry et al., 1994). HeLa cells were infected with an increasing m.o.i. of Ad5Luc3, ranging from 0.02 to 0.2 f.u./cell to 10⁵ cells, and luciferase activity (expressed in relative light units; RLU) was assayed in cell lysates at 18 h after infection, using luciferase substrate solution (Promega, Madison, WI). The reaction was carried out in a Lumat LB-9501 luminometer (Berthold Bioanalytical, Wildbad, Germany). Biological effects of synthetic peptides was determined in the linear range of dose-response, i.e. luciferase activity versus Ad5Luc3 m.o.i. Ad5Luc3 was pre-incubated with peptides at room temperature for 2 h, and the mixture added to HeLa cells pre-cooled on ice. After incubation for 1 h at 0°C, unadsorbed virus and peptide were rinsed off, the cell monolayers were covered with pre-warmed medium, transferred to 37°C and further incubated at this temperature for 18 h, then processed for luciferase assay.

Serotype specificity of Ad neutralization

The neutralization activity of synthetic peptides at the cell attachment step was assayed by immunoprecipitation of the major Ad capsid proteins using rabbit anti-Ad2 virion serum and peroxidase-labeled conjugate, and immunoblots scanned as described above. Control experiments for possible cellular toxicity of peptides and cell viability in this and the previous assay consisted of pre-incubating HeLa cell monolayers with Ad for 1 h at 0°C, a temperature which only allows virus–cell attachment, or 37°C, a temperature at which both cell attachment and entry occur. Unadsorbed virus was then rinsed off and peptides added to the cells for 1 h at 37°C, at the post-attachment or post-entry steps.

Biopanning of the phage hexapeptide library on mAbs

The filamentous phage hexapeptide library was kindly provided by George Smith (U5E5 phage; Scott and Smith, 1990). Affinity biopanning of the phage hexapeptide library on mAbs 1D6.3 and 7A2.7 was assayed from the level of luciferase gene expression using the luciferase assay on Ad5Luc3-infected cells (Henry et al., 1994). HeLa cells were infected with an increasing m.o.i. of Ad5Luc3, ranging from 0.02 to 0.2 f.u./cell to 10⁵ cells, and luciferase activity (expressed in relative light units; RLU) was assayed in cell lysates at 18 h after infection, using luciferase substrate solution (Promega, Madison, WI). The reaction was carried out in a Lumat LB-9501 luminometer (Berthold Bioanalytical, Wildbad, Germany). Biological effects of synthetic peptides was determined in the linear range of dose-response, i.e. luciferase activity versus Ad5Luc3 m.o.i. Ad5Luc3 was pre-incubated with peptides at room temperature for 2 h, and the mixture added to HeLa cells pre-cooled on ice. After incubation for 1 h at 0°C, unadsorbed virus and peptide were rinsed off, the cell monolayers were covered with pre-warmed medium, transferred to 37°C and further incubated at this temperature for 18 h, then processed for luciferase assay.

Acknowledgements

We thank Arnaud Dupuy d’Angeac for fruitful discussions and help in flow cytometry analysis, and Bernard Gay for iconography. We are grateful to Jeff Engler and Jeong-Shin Hong for their gift of mAb D2.5, Frank Graham for Ad5Luc3, Darrin Devaux for Ad5 ligand molecule Fradelizi for the Daudi-HLA® E8.1 cell line, Jadwiga Chroboczek for recombinant baculovirus expressing the Ad2 knob, George Santis and Valérie Legrand for plasmid pTGF522 and Sharon Michael for CPE neutralization assays with mAbs ID6.3 and 7A2.7. This work was
References

Received on November 18, 1996, revised on January 21, 1997