Dynamics of proteasome distribution in living cells

Eric A.J. Reits, Adam M. Benham, Beatrice Plougastel1, Jacques Neefjes2 and John Trowsdale1

Department of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands and 1Human Immunogenetics Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, UK

2Corresponding author
e-mail: jneefjes@nki.nl

Proteasomes are proteolytic complexes involved in non-lysosomal degradation which are localized in both the cytoplasm and the nucleus. The dynamics of proteasomes in living cells is unclear, as is their targeting to proteins destined for degradation. To investigate the intracellular distribution and mobility of proteasomes in vivo, we generated a fusion protein of the proteasome subunit LMP2 and the green fluorescent protein (GFP). The GFP-tagged proteasomes were located within both the cytoplasm and the nucleus. Within these two compartments, proteasomes diffused rapidly, and bleaching experiments demonstrated that proteasomes were transported slowly and unidirectionally from the cytoplasm into the nucleus. During mitosis, when the nuclear envelope has disintegrated, proteasomes diffused rapidly throughout the dividing cell without encountering a selective barrier. Immediately after cell division, the restored nuclear envelope formed a new barrier for the diffusing proteasomes. Thus, proteasomes can be transported unidirectionally over the nuclear membrane, but can also enter the nucleus upon reassembly during cell division. Since proteasomes diffuse rapidly in the cytoplasm and nucleus, they may perform quality control by continuous collision with intracellular proteins, and degrading those proteins that are properly tagged or misfolded.

Keywords: antigen presentation/GFP/nuclear import/photobleaching/proteasome

Introduction

The 20S proteasome is an intracellular proteinase complex involved in non-lysosomal mechanisms of protein degradation. Its substrates include transcription factors, oncoproteins and cyclins, and it is responsible for the generation of peptides for presentation by MHC class I molecules to the immune system (Goldberg, 1995; Jentsch and Schlenker, 1995; Cerundolo et al., 1997). The 20S proteasome forms the core of a larger 26S protease complex, which catalyses the ATP-dependent degradation of ubiquitinated proteins (Hochstrasser, 1995). Alternatively, the 20S proteasome can associate with the PA28 activator which is involved in antigen presentation (Groettrup et al., 1996). The barrel-shaped structure of the proteasome is composed of 28 subunits arranged in four seven-membered rings. The two outer rings are formed by α subunits and the two inner rings by β subunits, with eukaryotic proteasomes consisting of multiple different α- and β-related subunits (Löwe et al., 1995; Groll et al., 1997). The combined β subunits exhibit proteolytic activity, and are synthesized as inactive precursors to avoid unrestrained degradation. The β subunit presequence is removed either just before or during the dimerization of the two αβ ring structural complexes (Yang et al., 1995; Schmidtke et al., 1996). Three β subunits, delta (β1), MB1 (β5) and Z (β2), are down-regulated in proteasomes after induction with interferon γ (IFNγ) (a potent stimulator of MHC class I presentation) and replaced by the IFNγ-inducible subunits LMP2 (β1i), LMP7 (β5i) and MECL-1 (β2i) (Belich et al., 1994, 1996). The mammalian proteasome exhibits up to five different peptidase activities, including those that preferentially cleave peptides at the carboxy side of hydrophobic, basic and acidic residues, commonly referred to as chymotrypsin-like, trypsin-like and peptidyl-glutamyl-peptide hydrolysing activities. The activities of proteasomes can be assayed with a variety of different substrates, including fluorogenic peptides (Driscoll et al., 1993; Gaczynska et al., 1993). Incorporation of LMP2 and LMP7 into the proteasome results in an increased chymotryptic and trypsic peptidase activity in vitro, modulating the cleavage site preferences of the proteasome (Kuckelkorn et al., 1995), although larger peptide substrates can give different results (Boes et al., 1994).

Proteasomes are localized both in the nucleus and in the cytoplasm of eukaryotic cells (Palmer et al., 1994, 1996). They may be free in the cytoplasm or associated with cytoskeletal elements. In addition, some proteasomes may be bound to the endoplasmic reticulum (ER) (Yang et al., 1995) and may deliver degraded antigenic peptides directly to TAP (transporter associated with antigen processing). It is unknown whether proteins marked for degradation require specific targeting or reach the proteasome by diffusion. The regulation of proteasome distribution between the cytoplasm and the nucleus is also unknown. This may either occur only during mitosis, when the nuclear envelope has disintegrated, or through active nuclear import. Nuclear targeting of the proteasome may be directed by some of the α subunits containing sequences for nuclear localization signals (NLSs) (reviewed by Tanaka et al., 1990). These NLSs are able to direct reporter molecules to the nucleus in vitro and could, therefore, be functional in vivo to translocate proteasomes into the nucleus as intact complexes, although this has not been verified experimentally (Nederlof et al., 1995).

In order to visualize the proteasome and to investigate
its intracellular distribution and mobility

in vivo, we coupled the green fluorescent protein (GFP) to the C-terminus of the proteasome subunit LMP2. To follow proteasomal mobility, living LMP2–GFP-transfected cells were analysed by confocal microscopy. We show that proteasomes are divided over the nuclear and the cytoplasmic compartments, within which they rapidly diffuse. Fully assembled proteasomes can enter the intact nucleus either through the nuclear pore or during reassembly of the nuclear envelope after cell division.

Results

Quantitative incorporation of GFP-tagged LMP2 into proteasomes

HT1080 fibrosarcoma cells were stably transfected with a chimera of the proteasome subunit LMP2 with GFP attached to the C-terminus (LMP2–GFP). Since antisera raised against the C-terminus of LMP2 can detect intact proteasomes (Belich, 1996), we anticipated that the C-terminus of LMP2 would be exposed at the surface of the proteasome. To measure the relative amount of incorporation of LMP2–GFP into the proteasome, LMP2–GFP was detected in cell lysates prior to and after removal of proteasomes by three consecutive rounds of immunoprecipitation with the monoclonal antibody (mAb) MCP21 (recognizing the proteasome α subunit HC3/α2) (Hendil et al., 1995). Western blotting with anti-GFP antisera showed that the complete LMP2–GFP fusion protein was quantitatively removed from the lysate by MCP21 (the dilution factor of the lysates due to immunoprecipitations was <10%). Since LMP2–GFP was not detectable in the lysate after MCP21 precipitation, LMP2–GFP was incorporated quantitatively into proteasomes (Figure 1A). In addition, no higher molecular weight band that might correspond to unprocessed LMP2–GFP was observed.

To show that the GFP modification of LMP2 did not affect the generation of fully assembled proteasomes, proteasomes were immunoprecipitated with anti-GFP antibodies from lysates of the transfectant prior to or after, 72 h of IFNγ treatment. IFNγ up-regulates the expression of LMP2 and LMP7, which replace the delta and MB1 subunits, respectively (Belich et al., 1994). The immunoprecipitates were separated by SDS–PAGE, transferred to nitrocellulose membranes and the delta and LMP7 subunits were detected with specific antibodies as indicated (Figure 1B). As expected, LMP7 was incorporated after IFNγ treatment into LMP2–GFP-containing proteasomes. Moreover, the delta subunit was recovered from the GFP-containing proteasomes, indicating that these proteasomes can contain two β rings, one of which has incorporated subunit delta and the other containing LMP2–GFP. As anticipated, IFNγ treatment reduced the level of delta, due to the incorporation of endogenous LMP2.

Thus, LMP2–GFP appears to be incorporated quantitatively into fully assembled proteasome structures. This was confirmed further by separating cytosol from both the LMP2–GFP transfectant and a control GFP-only transfectant over a sucrose density gradient. LMP2–GFP migrated at a high density together with other proteasome subunits incorporated into proteasomes. No LMP2–GFP was detected at the density corresponding to low molecular weight proteins such as free GFP (not shown).

GFP-tagged proteasomes are functional

To determine any effect of incorporation of LMP2–GFP on the catalytic activity of the proteasome, the peptidase activity of proteasomes isolated with either the mAb...
It is unclear whether proteasomes are sequestered as relatively immobile complexes or whether they move freely through the cell. Furthermore, it is unknown whether proteins destined for degradation are transported to proteasomes or whether protease and substrate meet by continuous transport or diffusion. In order to address these questions, the mobility rate of GFP-tagged proteasomes in living cells was determined. A small region of the nucleus (indicated by a box in Figure 3A) was bleached by scanning this region for various periods, as indicated. After bleaching of the discrete boxed region for 10 or 30 s, the entire nucleus lost fluorescence, whereas the cytosol remained bright (Figure 3A). To verify that there was no leakage to non-bleached areas of laser light during bleaching, cells were fixed in methanol prior to applying the bleaching protocol (Figure 3C). Again the boxes denote the bleached areas. A well-defined region in both the nucleus and the cytoplasm (upper and lower cell respectively) was permanently bleached. Note that the pattern of fluorescence is markedly different from that of living cells because the fixation resulted in the precipitation of proteasomes. However, in living cells, the entire nucleus lost fluorescence within 30 s of bleaching of a small fraction of the nucleus, implying that most proteasomes moved through the bleached region within this period.

To study whether the proteasomes moved by active transport or by diffusion, the cells were depleted of ATP by pre-treatment with sodium azide (NaAz) and 2-deoxyglucose prior to the bleaching experiments. This is sufficient to arrest active transport processes, as shown by examining fluid phase endocytosis by the LMP2–GFP transfectant of the red fluorophore sulforhodamine 101 (SR101) upon pre-treatment (Figure 3D). Negligible amounts of SR101 were endocytosed after pre-treatment with NaAz and 2-deoxyglucose. Bleaching of a box in the nucleus of cells depleted of ATP resulted in loss of fluorescence in the entire nucleus (Figure 3A; bottom panel). Most proteasomes moved through the bleached box in the nucleus within this period in an ATP-independent fashion, indicating that proteasomes diffused rapidly throughout the nucleus.

The mobility of proteasomes in the cytosol was studied in a similar way. Bleaching of the boxed area in the cytosol for 30 or 90 s progressively reduced the fluorescence in the cytosol, but not in the nucleus (Figure 3B). Longer bleaching periods were required for the cytoplasm than for the nucleus, since the cytoplasm is considerably larger. ATP depletion, followed by bleaching of a part of the cytoplasm for 90 s (Figure 3B; bottom panel), also showed uniform loss of cytoplasmic fluorescence, indicating that proteasomes rapidly diffuse within the cytoplasm. The nuclear envelope apparently imposes a barrier, since rapid diffusion between cytoplasm and nucleus was not observed.

It is noteworthy that no cytosolic or nuclear areas outside the bleached region retained fluorescence upon bleaching, indicating that the majority of the proteasomes were freely mobile. To quantitate this, fluorescence recovery after photobleaching (FRAP) experiments were performed. The immobile fraction of proteasomes in the nucleus was calculated to be 3 ± 2% (n = 10). The same protocol was applied to the cytoplasm. Here 8 ± 3% (n = 10) of the fluorescent proteasomes were immobile. The higher immobile proteasome fraction within the cytosolic compartment might be due to a small quantity...
Fig. 3. Mobility of proteasomes in the cytoplasm and nucleus. Living transfectants were analysed by confocal microscopy at 37°C. (A) A small region of the nucleus (indicated by the box) was bleached by slow scan for either 10 or 30 s as indicated. To deplete ATP, cells were incubated for 30 min with a mixture of NaAz and 2-deoxyglucose prior to the bleaching protocol (panel NaAz). (B) A small region of the cytoplasm (indicated by the box) was bleached by slow scan for either 30 or 90 s as indicated. Bottom panel: a mixture of NaAz and 2-deoxyglucose was used to deplete ATP prior to initiating the bleaching experiment. (C) To validate the bleaching procedure, cells were fixed with methanol prior to applying the bleaching protocol. The boxes denote the bleached cytoplasmic and nuclear areas. Bleaching of fixed cells results in a stable well-defined box not affected by further incubation for 40 min (right panel). (D) To control for depletion of ATP, living cells were treated for 30 min with a mixture of NaAz and 2-deoxyglucose and incubated with the fluid phase marker SR101 to demonstrate inhibition of endocytosis. Bar, 10 μm.

Transport of proteasomes between cytoplasm and nucleus
Proteasome subunits are assembled in the cytoplasm, and most subunits, including LMP2, do not contain an NLS. It is thus unclear how proteasomes enter the nucleus. They may be transported through the nuclear pore or, alternatively, they may enter before assembly of the nuclear envelope during cell division. To study transport of GFP-tagged proteasomes over the nuclear membrane, the nucleus of the transfected cells was bleached (Figure 4A, middle panel) followed by culturing the cells at 37°C. Fluorescence slowly reappeared in the nucleus after long periods of culture (Figure 4A).

It is possible that the newly synthesized pool of (partially assembled) proteasomes is imported into the nucleus, rather than the pre-existing pool. To analyse this, the experiment was repeated in the presence of the translation inhibitor cycloheximide (Figure 4B). As before, some fluorescence in the nucleus reappeared, indicating that pre-formed proteasomes were imported slowly into the nucleus. This was not due to restoration of the bleached GFP fluorophore because bleaching of the entire cell followed by culture for 4 h in the presence of cycloheximide, to prevent new synthesis of LMP2–GFP, did not show any return of fluorescence (data not shown). To analyse whether this transport is uni- or bidirectional, the cytoplasm was bleached and cells were cultured in the presence of cycloheximide (Figure 4C). After 3 h, no increase in fluorescence in the cytoplasm and no decrease in fluorescence in the nucleus was observed, consistent with unidirectional proteasome transport from the cytoplasm to the nucleus. Quantitation of fluorescence confirmed both the lack of recovery of fluorescence in the cytoplasm and the slow decay of nuclear fluorescence at the same rate as the surrounding cells (not shown).

Free GFP redistribution is bidirectional
To demonstrate that slow unidirectional transport from cytoplasm to nucleus is not a general phenomenon for intracellular proteins, we analysed the transport of GFP expressed in the HT1080 cell line. GFP is a small ~27 kDa protein which is below the exclusion size for passive transport through the nuclear pore complex, in contrast...
Dynamics of proteasome distribution

Fig. 4. Proteasome transport between the cytoplasm and the nucleus. Living transfectants were bleached in the indicated region and cultured for 3 h in a tissue culture chamber at 37°C. Images were collected during this period by confocal microscopy. (A) The nuclei of two transfectants (indicated by arrows) were bleached by slow scan for 30 s (as indicated by the box). Timepoint $t = 0$ min is upon bleaching of the second nucleus (middle panel). The bottom panel is after 180 min. (B) Transfectant cells were incubated with cycloheximide before bleaching to inhibit synthesis of new proteasome subunits. The nuclei of two transfectant cells (indicated by arrows) were bleached by slow scan for 30 s (as indicated by the box). Timepoint $t = 0$ min is just after bleaching of the second nucleus (middle panel). The bottom panel is after 180 min. (C) Transfected cells were incubated with cycloheximide followed by bleaching of the cytoplasm for 90 s (as indicated by the box) to analyse for transport of proteasomes from the nucleus to the cytoplasm. Timepoint $t = 0$ min is just after bleaching of the cytoplasm (middle panel). The bottom panel is after 180 min of culture. Bar, 10 μm.

Proteasomes are large, abundant proteinase complexes involved in non-lysosomal degradation of proteins. Proteasomes are found within both the cytoplasm and the nucleus, but it was unclear whether they are free or associated with other proteins, cytoskeletal components or ER membranes. Association of proteasomes with a cellular scaffold would imply that proteins destined for degradation are targeted to these complexes. Alternatively,
change in distribution of proteasomes upon treatment with cytoskeletal components. Furthermore, we observed no effects of fixation, as proteasomes may precipitate on differences between these observations can be explained (since proteasomes are excluded from the ER lumen). The reduced level in the ER/Golgi region and nuclear envelope excluded from the nucleoli, in the cytoplasm, and at a proteasomes equally distributed in the nucleus, although with our experiments using living cells, which show without perfect 2-fold symmetry.

β different subunits, implying that the two seven-membered reassembly after cell division.

If proteasomes existed freely within the cell, their substrates could interact by collision with no need for a targeting mechanism. In addition, it is unclear how proteasomes enter the nucleus, as only a few α subunits contain a putative NLS. They may be transported through the nuclear pore or they may enter the nucleus during reassembly after cell division.

To visualize and follow the mobility of the proteasome in living cells, GFP was linked to the C-terminus of LMP2 (LMP2–GFP). The fusion of GFP with LMP2 did not prevent its incorporation into the complex, as LMP2–GFP is quantitatively associated with functional proteasomes. Further analysis of the GFP-tagged proteasomes showed that the delta subunit could also be recovered through precipitation of LMP2–GFP. Since delta is exchanged for the isolated 20S GFP-tagged proteasomes contain >14 different subunits, implying that the two seven-membered β rings of one proteasome can contain different subunits without perfect 2-fold symmetry.

Previous immunohistochemical studies using fixed cells showed proteasomes to be located in the cytoplasm and parts of the nucleus, occasionally associated with cytoskeletal components (Palmer et al., 1994). This contrasts with our experiments using living cells, which show proteasomes equally distributed in the nucleus, although excluded from the nucleoli, in the cytoplasm, and at a reduced level in the ER/Golgi region and nuclear envelope (since proteasomes are excluded from the ER lumen). The differences between these observations can be explained by effects of fixation, as proteasomes may precipitate on cytoskeletal components. Furthermore, we observed no change in distribution of proteasomes upon treatment with IFNγ, suggesting that incorporation of different subunits into the proteasome does not influence cellular localization of proteasomes.

Bleaching experiments using transfectants showed that the GFP-labelled proteasomes diffused rapidly within the nucleus and the cytosol, although they diffuse ~7 times more slowly than free GFP (not shown). FRAP experiments to quantitate the mobile fraction indicated that virtually all nuclear proteasomes were mobile (97 ± 2%), whereas the mobile fraction in the cytoplasm was slightly less (92 ± 3%). This small difference may be due to the small amount of proteasomes associated with ER membranes (Rivett et al., 1992; Yang et al., 1995). Proteasomes are involved directly in generating peptides for antigen presentation (Rock et al., 1994), but it is unclear whether peptides are generated at specific locations and freely diffuse to TAP for entry in the ER, or are transported to TAP by specialized chaperones like hsp70 (Srivastava et al., 1994). Alternatively, proteasomes associated with TAP may be responsible for the generation of antigenic peptides. The observed diffusion of proteasomes in the cytoplasm suggests that antigens can be degraded everywhere within the cell. The resulting peptides probably diffuse at similar rates and will contact the high affinity peptide-binding site of TAP (Endert et al., 1995) in the ER membrane, which is present throughout the cytoplasm. Since nuclear antigens are presented efficiently by MHC class I molecules, they may be degraded by diffusing nuclear proteasomes, with the resulting peptides passing through the nuclear pore into the cytoplasm (as shown for free GFP) before binding to TAP. It is unclear

![Fig. 5. Mobility of GFP in the cytoplasm and nucleus. Living HT1080 cells transfected with GFP only were analysed by confocal microscopy at 37°C. (A) A small region of the nucleus (indicated by the box) was bleached by slow scan for 10 s (middle panel). The bottom panel is the bleached cell after 4 min of culture. (B) A small region of the cytoplasm (indicated by the box) was bleached by slow scan for 30 s (middle panel). The bottom panel is the bleached cell after 4 min of culture. Bleaching of either the nucleus or the cytoplasm shows rapid redistribution of fluorescence within 4 min. Bar, 10 μm.](image)

![Fig. 6. Proteasome mobility during cell division. Living transfectants were observed by confocal microscopy at 37°C. (A) A cell in metaphase shows alignment of the chromosomes on the mitotic spindle. The indicated region was bleached for 90 s resulting in a general loss of fluorescence (right panel). (B) Two cells after completion of cell division, still containing decondensed chromosomes. The indicated region was bleached for 90 s, resulting in a general loss of fluorescence of the bleached cell (right panel). (C) Cells during completion of the cell cycle, when the nuclear envelope has assembled. The box in the cytoplasm or the nucleus was bleached for 90 or 30 s respectively. Only the bleached compartments lost fluorescence. Bar, 10 μm.](image)
whether chaperones like hsp70 or other proteins are required for transfer of these peptides to TAP.

During metaphase, and just after cell division, the nuclear envelope disperses, removing the diffusion barrier between cytoplasm and nucleus and enabling proteasomes to migrate throughout the entire cell. Upon nuclear envelope formation, which seems to occur at a later stage than formation of the plasma membrane between the two daughter cells, proteasomes are again sequestered within either the cytoplasm or the nucleus. The nuclear envelope forms a diffusion barrier for GFP-tagged proteasomes but not for small proteins like GFP (or free proteasomal subunits), which can diffuse rapidly from the cytoplasm to the nucleus and vice versa, albeit at a slower rate than within the respective compartments. The intact nuclear envelope only allows very slow, unidirectional import of GFP-tagged proteasomes. Thus, proteasomes enter the nucleus both by rapid exchange during cell division and by slow import after assembly of the nuclear envelope.

Apparently, the nuclear pore is able to translocate large protein complexes like the proteasome, possibly mediated by NLS signals in α subunits or through signals contained within associating complexes such as the 19S activator. The 20S (yeast) proteasome is 113 Å within associating complexes such as the 19S activator. The 20S (yeast) proteasome is 113 Å × 148 Å and the channel in the nuclear pore has been reported to be 260 Å in diameter (Feldherr et al., 1984; Gerace, 1992). This allows transit of the proteasome without affecting its structure. Since the turnover of proteasomes is reported to be very slow (Tanaka and Ichihara, 1989), nuclear import should also be slow to enable balanced replacement of older proteasomes. However, during cell division, the cytoplasmic pool of proteasomes rapidly mixes with the nuclear pool until the nuclear envelope has reassembled. Although transport between the cytosolic and nuclear compartment is slow, proteasomes diffuse rapidly within the two compartments. This suggests that proteins marked for degradation by the proteasome do not require specific targeting but may encounter the proteasome by simple collision. Diffusing proteasomes will interact continuously with cytosolic or nuclear proteins, and perform quality control to degrade the proteins that are either tagged by ubiquitination, or otherwise already in an appropriate conformation for degradation. Our data suggest that substrate-specific recognition is sufficient for the proteasome to degrade its targets without the need for directed transport.

Construction of the LMP2–GFP fusion protein and transfection

The human LMP2 cDNA was derived from an 800 bp full-length LMP2 cDNA insert (Kelly et al., 1991). Fluorescence activated cell sorting (FACS)-optimized mutant GFP cDNA was kindly provided by Dr B.Cormack (Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA). An LMP2 fragment without the final stop codon was generated by PCR, with a BamHI site at the 5′ end (using oligo 5′CGCCGATCCGCTGCGCGCCGCGGC-AGAAGTC, ending with the first codons of GFP) and oligos 5′ TCTTT-TACTCTATCATATAGAAGTGGCAG). A GFP fragment was created by PCR with the end of LMP2 (without the stop codon) at the 5′ end (using oligo 5′ TTCTATGAGATGATGAAAGGAAGAAGCCTT and an EcoRI site at the 3′ end (using oligo 5′ CGGAATTCCGTTTGTATGTTGATCATGACC) which was cloned into pcDNA3 (Invitrogen, San Diego, CA) by BamHI–EcoRI digest and checked by sequence analysis.

Immunoprecipitation and Western blotting

Cells were washed twice with phosphate-buffered saline (PBS) at a concentration of 3 × 10 M and lysed for 30 min at 4°C in 0.5% NP-40-containing lysis buffer (0.01 M Tris–HCl pH 8.0, 0.14 M NaCl, 0.025% NaAz, 5 mM iodoacetamide, 2 mM phenylmethylsulfonyl fluoride). Lysates (100 μl/sample) were cleared by centrifugation for 30 min at 10 000 g and pre-cleared twice for 1 h with glycine–Sepharose CL–4B beads (Pharmacia, Uppsala, Sweden). Immunoprecipitations were performed using either 2.5 μl of the mAb MCP21 or GFP antisera and washed twice with NP-40, once with TSA (0.01 M Tris–HCl pH 8.0, 0.14 M NaCl, 0.025% NaAz) and once with 0.05 M Tris–HCl pH 7.5. In this protocol, the original lysate was diluted <10%. Pellets were dissolved in SDS sample buffer, separated by SDS–PAGE and transferred to PVDF membranes. Blots were blocked for 1 h in PBS, 0.2% Tween-20 (PBS/T) and 5% non-fat milk, and incubated with specific antibodies for 1 h at room temperature. Blots were washed four times with PBS/T for 10 min, and incubated with peroxidase-conjugated second antibodies for 45 min. Non-bound antibodies were removed by washing, and visualization was performed by enhanced chemiluminescence (Amersham, UK).

Materials and methods

Antibodies

Polyclonal rabbit anti-GFP serum was raised against a fusion protein of GST–GFP (kindly provided by Dr K.Sawin, ICRF, London, UK). Polyclonal rabbit anti-LMP2, anti-LMP7 and anti-delta sera were raised against carboxy-terminal peptides from LMP2, LMP7 and delta, respectively (kindly provided by Dr M.Belich, ICRF). Proteasomes were precipitated using the mAb MCP21 (kindly provided by Dr K.Hendil, August Krogh Institute, Copenhagen, Denmark) which recognizes the α subunit HS3.

Conformational stability

Construction

To quantitate the mobile fraction of GFP-tagged proteasomes, FRAP experiments were performed (Edidin et al., 1976; Cole et al., 1996). A
box in the nucleus was bleached and the effect on the fluorescence in this box versus a number of boxed regions outside the bleach box was quantitated. The latter boxes were averaged to compensate for local variations. From these data, the immobile fraction can be determined using the formula \(\%\text{immobile} = \left(\frac{F_{A\text{after}}}{F_{B\text{before}}} - \frac{F_{A\text{after}}}{F_{B\text{before}}} \right) \times 100 \). \(F_A \) is the fluorescence in the bleach box and \(F_B \) the fluorescence in the box outside this region; the ratio of \(F_A \) and \(F_B \) corrects for differences in the thickness of the boxes (the \(z \)-direction). The fluorescence is determined before and after bleaching, and whereas both \(F_A \) and \(F_B \) will decrease due to equal bleaching of the mobile fraction, only \(F_A \) will lose the immobile fraction.

Acknowledgements

The authors thank Isabel Correa for help with cell culture and transfection, Lauran Oomen and Richard Wubbolts for assistance with confocal microscopy, Marieke van Ham for support with the mathematics and Jennifer Lippeccot-Schwartz for helpful suggestions. This work was supported by The Netherlands Organization for Scientific Research (Pioneer) and by a Training and Mobility of Researchers Programme grant, with early stages supported by the Dr Saal van Zwanenburgstichting, the Stichting Dr Hendrik Muller’s Vaderlandsfonds and the Vrije Universiteitfonds.

References

E.A.J.Reits et al.

Received on June 9, 1997; revised on July 16, 1997

6094