Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S. pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites

Søren Kjærulf1, Dennis Dooijes2, Hans Clevers2 and Olaf Nielsen1,3

1Department of Genetics, Institute of Molecular Biology, University of Copenhagen, DK- 1353 Copenhagen K, Denmark and 2Department of Immunology, University Hospital, PO Box 88500, 3508 GA Utrecht, The Netherlands

3Corresponding author e-mail: onigen@biobase.dk

The Schizosaccharomyces pombe mfm1 gene is expressed in an M cell-specific fashion. This regulation requires two HMG-box proteins: the ubiquitous Ste11 transcription factor and the M cell-controlling protein Mat1-Mc. Here we report that the mfm1 promoter contains a single, weak Ste11-binding site (a so-called TR-box) that can confer M-specificity on a heterologous promoter when present in eight copies. In vitro, both Mat1-Mc and Ste11 can bind this box with approximately the same affinity. The Mat1-Mc protein caused a dramatic increase in the DNA-binding of Ste11 to this box, under conditions where we could not detect Mat1-Mc in the resulting protein–DNA complex. When we changed a single base in the mfm1 TR-box, such that it resembled those boxes found in ubiquitously expressed genes, Ste11 binding was enhanced, and in vivo the mfm1 gene also became expressed in P cells where Mat1-Mc is absent. These findings suggest that M-specificity results from Mat1-Mc-mediated Ste11 binding to weak TR-boxes. We have also defined a novel motif (termed M-box), adjacent to the mfm1 TR-box, to which Mat1-Mc binds strongly. A DNA fragment containing both the TR- and the M-box allowed the formation of a complex containing both Ste11 and Mat1-Mc. A single copy of this fragment was sufficient to activate a heterologous promoter in an M-specific fashion, suggesting that these two boxes act in a synergistic manner.

Keywords: differentiation/fission yeast/HMG-box proteins/sex determination/transcriptional activation

Introduction

The HMG-box is a recently discovered DNA-binding element present in several eukaryotic proteins. Sequence analysis indicates that the HMG-box is a stretch of ~70 amino acids, with a net positive charge and an abundance of aromatic residues and prolines (Baxevanis and Landsman, 1995). Based on sequences and binding characteristics, the HMG-box protein family can be divided into two groups. One group includes proteins such as HMG1–2 and UBF that often contain multiple HMG-boxes and recognize DNA in a structure- rather than sequence-dependent fashion (reviewed by Bustin and Reeves, 1996). The second group contains proteins with a single HMG-box, and these bind DNA in a sequence-specific manner and some of them are activators of transcription. Members of this subfamily include the mammalian sex-determining factor SRY (Gubbay et al., 1990; Sinclair et al., 1990) and the related SOX gene products, the lymphoid-specific LEF-1/TCF-1 proteins (Travis et al., 1991; Van de Wetering et al., 1991; Waterman et al., 1991) and several proteins involved in mating-type determination in fungi, e.g. Mat1-Mc and Ste11 from the fission yeast Schizosaccharomyces pombe (Kelly et al., 1988; Sugimoto et al., 1991; Dooijes et al., 1993).

Although the similarity of the primary sequence is modest, all HMG-box proteins probably fold up in the same tertiary structure. Thus, in nuclear magnetic resonance (NMR) studies, the HMG-boxes of HMG1, SRY and SOX4 (Weir et al., 1993; van Houte et al., 1995; Werner et al., 1995) were found to adopt highly similar structures consisting of three α-helices, arranged in an L shape. This may provide a structural basis for the unusual DNA-binding characteristics of the HMG-box proteins, which include interaction with the minor groove of the DNA helix, binding to irregular DNA structures, such as the sharp bends present in four-way junction DNA molecules, and the ability to modulate the DNA helix by bending (Bustin and Reeves, 1996). The biological significance of this DNA bending is still obscure. However, it was reported recently that DNA bending induced by the LEF-1 protein facilitates the formation of a higher-order nucleoprotein complex in the T-cell receptor α (TCRα) enhancer (Giese et al., 1995), suggesting that HMG-box proteins may have an architectural role in assembling such complexes. Supporting this idea, a mutant SRY protein that binds DNA with almost normal affinity but bends DNA in a different angle has been found in a sex-reversed XY patient (Pontiggia et al., 1994).

Although data on HMG-box proteins and their interaction with DNA have accumulated during the last few years, little is known about their in vivo action, and the mechanism by which the SRY protein controls male development in mammals is still largely unknown (Schafer and Goodfellow, 1996). SRY is highly homologous to the mating-type protein Mat1-Mc from S. pombe (Kelly et al., 1988; Gubbay et al., 1990; Sinclair et al., 1990). SRY and Mat1-Mc bind to the same sequence, CTTTGTT, in vitro (Dooijes et al., 1993), and Mat1-Mc has formally a function similar to SRY in establishing sex-specific gene expression.

The sexual differentiation process in S. pombe is activated under conditions of nitrogen starvation, where the cells are induced to exhibit either minus (M) or plus (P) mating behaviour, depending on which gene they express from the mat1 locus. Expression of the mat1-Mc gene generates an M cell, whereas expression of the mat1-Pc...
gene gives rise to a P cell (Kelly et al., 1988). The Mat1-Mc and Mat1-Pc proteins specify the mating type by activating a number of, respectively, M- or P-specific genes. The products of these are the cell type-specific components of the pheromone communication system that enables the two cell types to identify each other prior to mating (reviewed by Nielsen and Davey, 1995). The M-specific genes controlled by Mat1-Mc include three structural genes for the M-factor pheromone, mfm1-3 (Davey, 1992; Kjærulff et al., 1994), the mam1 gene encoding an M-factor transporter (Christensen et al., 1997), a gene, mam2, that encodes the receptor for the P-factor pheromone (Kitamura and Shimoda, 1991) and the sxa2 gene encoding a P-factor-degrading protease (Imai and Yamamoto, 1992; Ladds et al., 1996; Yabana and Yamamoto, 1996).

The Ste11 protein, which is a key transcription factor in the sexual differentiation pathway in S. pombe, is one of the few HMG-box proteins with known target sites. Ste11 binds to the so-called TR-box, TTCTTTGTTT (Sugimoto et al., 1991), the core of which is identical to the Mat1-Mc-binding site. Ste11 is activated by nitrogen starvation (Li and McLeod, 1996), and TR-boxes are found in the promoter regions of many genes that are expressed in a Ste11-dependent manner during mating. These include the M-specific genes as well as genes that are expressed in both cell types (Sugimoto et al., 1991; Kjærulff et al., 1994; Petersen et al., 1995).

In the present study, we investigate the mechanism by which M-specific genes are activated during sexual differentiation in S. pombe. We show that M-specificity is conferred on the mfm1 gene by a special version of the TR-box that binds Ste11 poorly. Both Ste11 and Mat1-Mc can bind to this box and, under conditions of limiting amounts of Ste11, the Mat1-Mc protein can recruit Ste11 to the TR-box. We propose that ubiquitously expressed genes harbour a strong TR-box, to which Ste11 can bind on its own, whereas M-specificity results from Mat1-Mc-dependent Ste11 binding to a weak TR-box.

Results

Mat1-Mc and Ste11 bind the TR-box of the mfm1 promoter

As a representative M cell-specific gene we chose mfm1, one of three structural genes encoding M-factor pheromone (Davey, 1992; Kjærulff et al., 1994). Expression from mfm1 was monitored using a fusion of the mfm1 promoter and the Escherichia coli lacZ gene (Figure 1A). This fusion behaves like the wild-type mfm1 gene; expression is limited to M cells, is induced by nitrogen starvation and further stimulated by a pheromone signal from P cells (Figure 1B; wt; Kjærulff et al., 1994).

The Ste11 transcription factor is required for induction of mfm1 (Kjærulff et al., 1994). While Ste11 may regulate mfm1 expression through its control of mat1-Mc (Sugimoto et al., 1991), it also appears to play a more direct role, since a ste11 strain harbouring a plasmid that produces functional Mat1-Mc protein from the nmt promoter still fails to transcribe the mfm1–lacZ fusion (Figure 1B, Ste11 + pmnt-Mc). Consistent with this, a TR-box is situated 79 bp upstream of the transcription start point (ssp) in mfm1, and all other known M-specific genes contain a TR-box at a similar position (Figure 1A, Table I). To determine the functional significance of this element, we altered the conserved G of the mfm1 TR-box to a T. This mutation prevented binding of Ste11 in vitro (see below) and almost completely abolished promoter function (Figure 1B, TR-mut1).

The Mat1-Mc protein was shown previously to bind the sequence CTTTGTGT (Dooijes et al., 1993), which constitutes the core of the TR-box, and we therefore compared the abilities of the Ste11 and Mat1-Mc proteins to bind the TR-box of the mfm1 promoter in vitro. These experiments showed that E. coli-expressed GST–Ste11 and Mat1-Mc fusion proteins bind to an oligonucleotide covering the TR-box of mfm1 with approximately equal affinity (KD ≈ 10−8 M). In both cases, the retarded complex was competed efficiently by the TR-box, but not by the mutated (TR-mut1), nor by two oligonucleotides containing unrelated sequences (Figure 2A and B).

The TR-box of mfm1 confers M-specific expression on a heterologous promoter

Given the fact that Mat1-Mc binds the mfm1 TR-box, we investigated whether this element could confer M-specific expression on a heterologous promoter. Various copies of it were inserted in the Saccharomyces cerevisiae CYC1 minimal promoter, which was fused to the E. coli lacZ gene (Lowndes et al., 1992). A single mfm1 TR-box in the minimal promoter produced negligible β-galactosidase activity (Figure 3). However, when eight copies of this TR-box were present, a high level of β-galactosidase activity was induced by nitrogen starvation, and this activity was stimulated further by a pheromone signal. Most importantly, however, induction of expression was restricted to M cells.

The TR-boxes of ubiquitously expressed genes and those of M-specific genes differ in sequence

These observations indicated that the M-specificity of the mfm1 promoter may lie in the TR-box or sequences in its immediate vicinity. This is quite surprising, since TR-boxes are also found in genes expressed in both cell types. However, we noticed a striking difference between the TR-boxes found in M-specific genes and those found in ubiquitously expressed genes (Table I). All promoters of the latter class contain at least one copy of the 10 bp motif, TTCTTGTGT. This 10 bp motif is not found in any of the six known M-specific genes. Here the consensus is somewhat smaller, namely the 8 bp motif TTCTTGTT. To test whether this sequence difference was responsible for M-specificity, we changed the TR-box of the mfm1–lacZ fusion into the version found in ubiquitously expressed genes by substituting the 5′ end with a T. Interestingly, this construct was now expressed in both M and P cells (Figure 1B, TR-mut2). Hence, the addition of only one T to the 5′ end of the TR-box converts mfm1 from an M-specific gene into a gene that is expressed in both cell types. Furthermore, we note that in P cells expression requires a pheromone signal.

Recently, we found by site selection that the preferred binding site of Ste11 in vitro is the 13 bp motif, TTTCTTTGTCTC (Dooijes et al., in preparation), which resembles the TR-box found in genes expressed in both cell types. Insertion of this sequence in the mfm1 promoter
Two HMG-box proteins activate M cell-specific genes

Fig. 1. Mutagenesis reveals two elements important for proper expression of the mfm1 gene. (A) Sequence of the mfm1 promoter. The TR-box and the M-boxes are in bold and underlined. Transcription start points (tsp) are indicated by an arrow. The KpnI site is the fusion point between mfm1 and lacZ. The right panel shows a primer extension analysis (P.) to determine the transcription start point of the mfm1–lacZ construct. The sequence of mfm1–lacZ was run in parallel (GATC). The arrowheads indicate the positions of the tsp. (B) Mutational analysis of the mfm1–lacZ fusion. wt is the wild-type mfm1–lacZ construct. Ste11/H11001 pnmt-Mc is the wild-type mfm1–lacZ construct integrated in an M ste11 strain containing a plasmid overexpressing mat1-Mc. The sequence located 69–98 bp upstream of the transcription start point has been highlighted. Point mutations introduced in this region are indicated by lower case letters (TR-mut1-3 and M-box mut1-2). All constructs were integrated in the mfm1 locus, at the SmaI site.

β-Galactosidase activities were measured in exponentially growing cultures (+), in cultures starved of nitrogen for 5 h (−), and in cultures starved of nitrogen and exposed to pheromone for 5 h (P). β-Galactosidase activities are expressed in Miller units and represent the mean of three separate trials. Restriction sites: Sm, SmaI; EV, EcoRV; H, HindIII; EI, EcoRI.

β-gal. units

<table>
<thead>
<tr>
<th>In M cells</th>
<th>In P cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4013</th>
<th>393</th>
<th>1053</th>
<th>4</th>
<th>6</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td>19</td>
<td>26</td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Ste11 + pnt1-Mc</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>TR-mut1</td>
<td>5</td>
<td>242</td>
<td>522</td>
<td>0</td>
<td>19</td>
<td>333</td>
</tr>
<tr>
<td>TR-mut2</td>
<td>15</td>
<td>307</td>
<td>731</td>
<td>0</td>
<td>15</td>
<td>283</td>
</tr>
<tr>
<td>M-box mut1</td>
<td>0</td>
<td>5</td>
<td>97</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>M-box mut2</td>
<td>0</td>
<td>24</td>
<td>131</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

also renders the gene ubiquitously expressed (Figure 1B, TR-mut3). Thus, the TR-box from ubiquitously expressed genes and the optimal Ste11-binding site both confer non-cell type-specific expression on the mfm1 gene. Furthermore, methylation interference experiments have showed that the two 5′ T's, which are missing in the M-specific TR-boxes, indeed are contacted by the Ste11 protein (Dooijes et al., in preparation).

Mat1-Mc stimulates Ste11 binding to the mfm1 TR-box

How can the absence of this T residue render expression dependent on the Mat1-Mc protein? We found that Ste11 binds the TR-box of the M-specific mfm1 gene more weakly than it binds the version found in ubiquitously expressed genes, whereas the Mat1-Mc protein seemed to bind the two different boxes equally well (Figure 4A). Western analysis showed that expression of Ste11 is induced by nitrogen starvation and that the level of Ste11 protein does not appear to be higher in M cells than in P cells (Figure 4B). We therefore speculated that Mat1-Mc may control the M-specific genes by assisting binding of Ste11 to their TR-boxes, and the following observations support this idea. Under conditions of limiting amounts of purified Ste11, where virtually no complex occurred with the mfm1 TR-box probe, we observed that addition of small amounts of purified Mat1-Mc caused a significant increase in appearance of shifted complex (Figure 4C).
Interestingly, this complex co-migrated exactly with the TR-box. The enhancement of Ste11 binding seems to reveal that, upon binding, the two proteins modulate the distortion of the DNA, which may be crucial for the binding of this component of it. The enhancement of Ste11 binding seems to be mediated specifically by Mat1-Mc, since addition of purified human SRY protein (Sinclair et al., 1990), that binds the TR-box in vitro, had no stimulatory effect on Ste11 binding (data not shown).

Mat1-Mc generates a DNase I-hypersensitive site in the mfm1 promoter

Taken together, the results described above strongly indicate that M-specificity is conferred on the mfm1 gene by the presence of a special version of the TR-box, to which the binding of Ste11 is mediated by Mat1-Mc. To investigate further the mechanism by which Mat1-Mc may enhance the binding activity of Ste11, we performed an in vitro DNase I foot-print on the mfm1 leader (Figure 5). As expected, both Mat1-Mc and Ste11 could protect the same 12 bp region spanning the TR-box. However, Mat1-Mc created a strong hypersensitive site just 3 bp downstream of the TR-box, suggesting that binding of this protein causes a strong distortion of the mfm1 promoter. Ste11 did not give rise to this hypersensitive site, and when Ste11 was added together with Mat1-Mc it became less apparent, consistent with a mechanism where Ste11 replaces Mat1-Mc at the TR-box. In summary, these observations confirm that Ste11 and Mat1-Mc both have the ability to bind the mfm1 TR-box. However, they also reveal that, upon binding, the two proteins modulate the DNA helix differently. Mat1-Mc seems to produce a strong distortion of the DNA, which may be crucial for efficient binding of Ste11 to this TR-box.

Mat1-Mc binds to two different elements

Unexpectedly, we found that Mat1-Mc also protected a 21 bp A-rich region starting 8 bp upstream of the TR-box (Figure 5). In fact, Mat1-Mc seems to protect this region better than the TR-box. To a lesser extent, the Ste11 protein also protected this upstream region (Figure 5). We therefore compared the sequences next to the TR-boxes in the two known M-specific genes (Table II). Five of these genes each harbour two ACAAT-boxes that are located, respectively, 14–16 bp and 24–26 bp from the inverted TR-box. The mam2 gene is an exception: here we only found the somewhat diverged sequence, ACATA, at the same 12 bp region spanning the TR-box. However, Mat1-Mc seems to produce a strong distortion of the DNA, which may be crucial for efficient binding of Ste11 to this TR-box.

References:

Table I. Comparison of TR-boxes found in M-cell-specific genes and in genes expressed in both cell types

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence</th>
<th>Position (C from ATG)</th>
<th>Orientation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>fui1<sup>a</sup><sup>b</sup></td>
<td>GATTTCTTTGGTCTTTTA</td>
<td>–247</td>
<td>></td>
<td>1</td>
</tr>
<tr>
<td>fui1<sup>b</sup></td>
<td>AACCTTTCTTTGGTCTTTTA</td>
<td>–158</td>
<td><</td>
<td>1</td>
</tr>
<tr>
<td>map<sup>a</sup></td>
<td>GCTTTTTGGTCTTTTA</td>
<td>–59</td>
<td><</td>
<td>2,3</td>
</tr>
<tr>
<td>mei2<sup>a</sup></td>
<td>GAAATTTCTTTGGTCTTTTA</td>
<td>–1890</td>
<td>></td>
<td>4,5</td>
</tr>
<tr>
<td>mei2<sup>a</sup></td>
<td>GAAATTTCTTTGGTCTTTTA</td>
<td>–1868</td>
<td>></td>
<td>4,5</td>
</tr>
<tr>
<td>mei2<sup>a</sup></td>
<td>GAAATTTCTTTGGTCTTTTA</td>
<td>–1696</td>
<td>></td>
<td>4,5</td>
</tr>
<tr>
<td>mei2<sup>a</sup></td>
<td>TAATTCTTTGGTCTTTTA</td>
<td>–1516</td>
<td>></td>
<td>4,5</td>
</tr>
<tr>
<td>mei2<sup>a</sup></td>
<td>TCTTTCTTTGGTCTTTTA</td>
<td>–911</td>
<td>></td>
<td>4,5</td>
</tr>
<tr>
<td>rep<sup>a</sup></td>
<td>AAATTCTTTGGTCTTTTA</td>
<td>–178</td>
<td>></td>
<td>6</td>
</tr>
<tr>
<td>rep<sup>a</sup></td>
<td>TACACTTTCTTTGGTCTTTTA</td>
<td>–165</td>
<td>></td>
<td>6</td>
</tr>
<tr>
<td>spkl<sup>a</sup></td>
<td>AGTTTTCTTTGGTCTTTTA</td>
<td>–602</td>
<td><</td>
<td>7</td>
</tr>
<tr>
<td>spkl<sup>a</sup></td>
<td>AAGTTTTCTTTGGTCTTTTA</td>
<td>–598</td>
<td>></td>
<td>7</td>
</tr>
<tr>
<td>ste4<sup>a</sup></td>
<td>TGGCTTTCTTTGGTCTTTTA</td>
<td>–84</td>
<td>></td>
<td>8</td>
</tr>
<tr>
<td>ste6<sup>a</sup></td>
<td>GAATTCTTTGGTCTTTTA</td>
<td>–174</td>
<td><</td>
<td>9</td>
</tr>
<tr>
<td>ste11<sup>a</sup></td>
<td>TGCTTTCTTTGGTCTTTTA</td>
<td>–1375</td>
<td>></td>
<td>5</td>
</tr>
<tr>
<td>zfl1<sup>a</sup></td>
<td>ATCACTTTCTTTGGTCTTTTA</td>
<td>–493</td>
<td>></td>
<td>10</td>
</tr>
<tr>
<td>zfl1<sup>a</sup></td>
<td>CAATTCTTTGGTCTTTTA</td>
<td>–92</td>
<td>></td>
<td>10</td>
</tr>
</tbody>
</table>

Consensus: TCTTTGGT

In M cell-specific genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence</th>
<th>Position (C from ATG)</th>
<th>Orientation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mam2<sup>a</sup></td>
<td>ATGGCCCTTTGGTACCTTA</td>
<td>–203</td>
<td>></td>
<td>11</td>
</tr>
<tr>
<td>mam2<sup>a</sup></td>
<td>ATGCCCTTTGGTACCTTA</td>
<td>–123</td>
<td><</td>
<td>12</td>
</tr>
<tr>
<td>mfm1<sup>a</sup><sup>b</sup></td>
<td>AGACTTTCTTTGGTCTTTTA</td>
<td>–157</td>
<td><</td>
<td>13,14</td>
</tr>
<tr>
<td>mfm1<sup>a</sup></td>
<td>TGCCTTTCTTTGGTCTTTTA</td>
<td>–138</td>
<td><</td>
<td>13</td>
</tr>
<tr>
<td>mfm1<sup>a</sup></td>
<td>AGACTTTCTTTGGTCTTTTA</td>
<td>–154</td>
<td><</td>
<td>15</td>
</tr>
<tr>
<td>san2<sup>a</sup></td>
<td>GGGCTCTCTTTGGTCTTCA</td>
<td>–322</td>
<td>></td>
<td>16</td>
</tr>
</tbody>
</table>

Consensus: TCTTTGGT

Expression has been shown to be reduced in a ste11^a mutant.

^aTR-box has been shown to be required for expression in vivo.

^bTR-box has been shown to be required for expression in vivo.
Two HMG-box proteins activate M cell-specific genes

Fig. 3. Eight copies of the TR-box of mfm1 confer M cell-specific expression on a minimal promoter from the S.cerevisiae cytochrome c gene fused to the E.coli lacZ gene. One or eight copies of an oligonucleotide containing the mfm1 TR-box were inserted in the vector pSPΔ178 (Lowndes et al., 1992), giving pcyc-TR (1/8). One or eight copies of an oligonucleotide covering the most downstream M-box of mfm1 (see below) were inserted in pSPΔ178, giving pcyc::M-box (1/8). The mfm1–lacZ fusion (see Figure 1) inserted in the vector pDW232 (Weilguny et al., 1991) was used as positive control (pmfm1). The vector pSPΔ178 (pcyc) was used as a negative control. The constructs were transformed into h– (M) and h+/H11001 (P) strains and assayed for β-galactosidase activities. The results are expressed in Miller units and each number is the average of three separate trials. Open boxes represent activities in vegetatively growing cultures, boxes hatched vertically are activities in nitrogen-starved cultures and boxes hatched horizontally are activities in nitrogen-starved cultures treated with pheromone.

This mutation severely reduced the mfm1 promoter function (Figure 1B, M-box mut1), demonstrating that the M-box indeed is important for expression of M-specific genes. However, the construct still supported a relatively high level of pheromone-induced expression in M cells.

Based on their expression pattern, the M-specific genes mam1, mam2, mfm1 and mfm2 are highly induced by nitrogen starvation per se, whereas mfm3 and sxa2 in addition to starvation require a pheromone signal for efficient induction (Kitamura and Shimoda, 1991; Imai and Yamamoto, 1994; Kjærulff et al., 1994; Christensen et al., 1997). A closer examination of the M-boxes revealed that mam1, mam2, mfm1 and mfm2 all have a conserved G residue in the 3′ end of one of their M-boxes, whereas mfm3 and sxa2 lack this G (Table II). To test whether this sequence difference could explain the pheromone-induced nature of mfm3 and sxa2, we changed the G in the M-box of the mfm1 promoter to an A. This mutation also reduced binding of the Mat1-Mc protein to the M-box in vitro.
(Figure 6), and now expression was only moderately induced by nitrogen starvation (Figure 1B, M-box mut2). However, this construct could still be induced to a relatively high level by a pheromone signal. Hence, strong interaction of Mat1-Mc with the M-box is required for expression induced by nitrogen starvation, whereas this interaction apparently is not important for pheromone stimulation.

Synergistic function of the TR-box and the M-box of mfm1

We were unable to demonstrate any activation of the *S.cerevisiae CYC1* promoter by the M-box, even when eight copies of it were inserted (Figure 3). However, an oligonucleotide containing the M-box combined with its downstream TR-box conferred M-specific expression on the CYC1 promoter—even in one copy (Figure 7A). Given the fact that a single TR-box had no effect on the minimal promoter (Figure 3), this result implies that the two HMG-box-binding sites work in a synergistic fashion. This synergy could reflect stable interaction between the Mat1-Mc and Ste11 proteins and DNA. To test this idea, we used the oligonucleotide containing the M-box and the TR-box in an electrophoretic mobility shift assay (EMSA). As expected, both Mat1-Mc and Ste11 bind this oligonucleotide on their own (Figure 7B). However, when both HMG-box proteins were present simultaneously, a unique complex was formed with slower mobility. Addition of antibodies against Ste11 or malE–Mat1-Mc both caused a supershift of this slow migrating complex, showing that the complex is of ternary nature containing Ste11, Mat1-Mc and DNA. Hence, Mat1-Mc may have two roles in the *mfm1* promoter; it enhances the binding of Ste11 to the TR-box (Figure 4C) and it forms a ternary complex with Ste11 when both the TR- and M-box are present (Figure 7B).

We next asked whether Mat1-Mc and Ste11 also interact *in vivo*. To address this question, we tagged the Mat1-Mc protein N-terminally with an influenza haemagglutinin (HA) epitope. The Mat1-Mc protein is expressed during vegetative growth, and further induced by nitrogen starvation (Figure 8A). Mat1-Mc appeared as a doublet band in the Western analysis irrespective of growth conditions. This doublet band is apparently due to phosphorylation (data not shown). We next overexpressed Ste11 and HA-tagged Mat1-Mc from the *nmt* promoter in M cells and made immunoprecipitations from cleared protein extracts using Ste11 antibodies. As shown in Figure 8B, the immunoprecipitated complex contained HA–Mat1-Mc. Furthermore, the co-immunoprecipitation of HA–Mat1-Mc was dependent on the presence of Ste11.

To confirm this interaction, we tested whether malE–Mat1-Mc co-purifies with GST–Ste11 using glutathione–Sepharose chromatography. Purified GST–Ste11 protein or unfused GST were immobilized on glutathione–Sepharose beads and incubated with *E.coli* extracts containing either malE or malE–Mat1-Mc. Proteins bound to the beads were analysed by immunoblotting with anti-malE antibodies (Figure 8C, upper panel). MalE–Mat1-Mc was detected in the GST–Ste11 sample but not with GST alone, suggesting that the two HMG-box proteins also interact *in vitro*. Unfused control malE protein did not interact with any of the analysed proteins. To map the surface of interaction between Mat1-Mc and Ste11, we fused the HMG-boxes of Ste11 and Mat1-Mc to, respectively, GST and malE. GST–Ste11*HMG* protein or unfused GST was immobilized on glutathione–Sepharose beads and challenged with malE, malE–Mat1-Mc*HMG* and malE–Mat1-Mc*HMG*.
Two HMG-box proteins activate M cell-specific genes

McFT (full-length Mat1-Mc). Full-length Mat1-Mc and the HMG-box of Mat1-Mc alone both bound the HMG-box of Ste11 to similar extents, indicating that the HMG-boxes of Ste11 and Mat1-Mc are sufficient for the interaction (Figure 8C, upper panel). Unfused control proteins did not interact with any of the analysed proteins. In conclusion, Mat1-Mc and Ste11 are likely to interact, and this appears to be mediated by interaction of their HMG-boxes.

Discussion

In the present study, we have examined the transcriptional regulation of M-specific genes in S. pombe. We have looked at the expression of the mfm1 gene, one of three genes encoding M-factor mating pheromone. Our main conclusion is that mfm1 is activated by the cooperative binding of the two HMG-box proteins, Mat1-Mc and Ste11. We propose that M-specificity is conferred on an S. pombe gene by the presence of a special version of the so-called TR-box (Figure 9). The ubiquitously expressed genes harbour a strong TR-box (TTTCTTTGTT), to which Ste11 can bind on its own, whereas M-specific genes contain a weak TR-box (TCTTTGTT) that Ste11 only binds efficiently in the presence of Mat1-Mc.

Both Mat1-Mc and Ste11 can bind to the M-specific TR-box, but we were unable to demonstrate simultaneous binding of the two HMG-box proteins. This may suggest a transient character or instability of a ternary complex under our conditions. Alternatively, Mat1-Mc and Ste11

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>mam1</td>
<td>TCAATTAGGATGTGTAAGTACCAATTGGAAGTACTAAACAAAGGCCCATTGTTAC</td>
</tr>
<tr>
<td>mam2</td>
<td>ACTTTGAGACATTAGAAGTGTTTTCTGAAATTTCTAAACAAAGGGAATTATTGGC</td>
</tr>
<tr>
<td>mfm1</td>
<td>TCGATTTAACAATTGCTAAGACAATTGCGACCAACAAAGGAGTCAAGTTTC</td>
</tr>
<tr>
<td>mfm2</td>
<td>CCAGAAATTTACACGTGAAACATGAAACAGAAAGGCTACACACCTGATCAGTTTC</td>
</tr>
<tr>
<td>mfm3</td>
<td>TCGATTTAACAATTGCTAAGACAATTGCGACCAACAAAGGAGTCAAGTTTC</td>
</tr>
<tr>
<td>sxa2</td>
<td>GTCCATTGTTTACATCAACCTAGAGATGGGCAACAAAGGAACCCAGCGAAG</td>
</tr>
</tbody>
</table>

4Expression has been shown to be induced by nitrogen starvation.

5Efficient expression requires both nitrogen starvation and a pheromone signal.
Fig. 7. (A) Synergistic function of the TR-box and M-box of \textit{mfm1} on the \textit{CYC1} minimal promoter. One or four copies of an oligonucleotide containing the most downstream M-box and the TR-box of \textit{mfm1} were inserted in pSPA178, giving pyc–TR–M-box (1/4). The constructs were transformed into $h^–$ (M) and h^+ (P) strains and assayed for \(\beta\)-galactosidase activities as described in Figure 3. (B) Mat1-Mc and Ste11 form a stable ternary complex with the \textit{mfm1} TR-box combined with its upstream M-box. In an EMSA, a labelled probe containing the TR-box and the most downstream M-box was incubated with purified Ste11 protein (50 nM) and increasing amounts of malE–Mat1-Mc (20–50 nM). In the last two lanes, anti-malE antibodies or anti-Ste11 antibodies were added to the binding reaction after 20 min of incubation.

may bind to the DNA in a sequential order, with Mat1-Mc binding first and changing the DNA conformation in a way that increases the affinity for Ste11, which then replaces Mat1-Mc. Supporting this model, binding of Mat1-Mc is known to induce strong bending of the DNA (Dooijes \textit{et al.}, 1993) and, in this study, we show that binding of Mat1-Mc creates a strong hypersensitive site in the \textit{mfm1} leader a few base pairs downstream of the TR-box, indicating a distortion of the DNA helix. Thus, one may speculate that the binding of Mat1-Mc to the TR-box primes open the minor groove in preparation for the loading of the Ste11 protein. In most cases, the HMG-box proteins actually possess considerably greater binding affinities for distorted DNA structures than they do for normal B-form DNA (Bustin and Reeves, 1996). For instance, the sequence-specific human SRY protein has even greater affinity for four-way junction DNAs than for its normal recognition sequence in B-form DNA (Ferrari \textit{et al.}, 1992).

Several copies of this TR-box are needed for M-specific activation of a heterologous promoter. Thus, other factors are likely to be involved in enhancing the activity of the single TR-box found in the endogenous promoters. In agreement with this, we defined a region upstream of the TR-box important for full activity of the \textit{mfm1} gene. This region is placed adjacent to the TR-box and contains two sites (ACAAAT) to which Mat1-Mc can bind, hence the name M-box. Five of the six known M-specific genes harbour two M-boxes and they are always situated 14–16 or 24–26 bp away from the inverted TR-box, indicating that the distance between these two elements may be important for promoter function. Mat1-Mc apparently binds much more strongly to the M-box than to the TR-box of \textit{mfm1}. Importantly, when we combined this M-box with its downstream TR-box, we conferred M-specific expression to a heterologous promoter, even when only one copy of this construct was present (Figure 7A). Given the fact that a single TR-box or a single M-box had no effect on the same promoter, this implies that the two HMG-box-binding sites work in a synergistic fashion. Moreover, \textit{in vitro}, Mat1-Mc and Ste11 form a stable ternary complex with an oligonucleotide containing both the M- and TR-box of \textit{mfm1} (Figure 7B). Since the M-box is the preferred binding site of Mat1-Mc and therefore important for efficient expression from the promoter, it may seem strange that multimerization of the \textit{mfm1} TR-box confers M-cell specificity to a heterologous promoter. However, Mat1-Mc also binds to the TR-box with a
Two HMG-box proteins activate M cell-specific genes

Fig. 8. (A) Western analysis of expression of HA–Mat1-Mc in M cells (h–). Protein extracts (100 μg) from mitotically growing cells (nitrogen +), from nitrogen-starved cells (nitrogen −) and from nitrogen-starved cells treated with pheromones (pheromone +) were Western blotted and probed with anti-HA antibodies (12CA5). (B) HA–Mat1-Mc co-immunoprecipitates with Ste11. Extracts were made from nitrogen-starved M Ste11 cells (h−) harbouring pREP4X-HA-Mat1-Mc alone or harbouring pREP4X-HA-mat1-Mc together with pREP3X-Ste11. Extracts were subjected to immunoprecipitation with affinity-purified anti-Ste11 antibodies, and the formed complexes and total extracts were Western blotted and probed for the presence of HA-Mat1-Mc using anti-HA antibodies (12CA5). (C) Mat1-Mc and Ste11 interact via their HMG-boxes. E.coli extracts containing either malE, malE–Mat1-McFL (full-length Mat1-Mc protein) or malE–Mat1-McHMG (HMG-box of Mat1-Mc) were batch-chromatographed on glutathione–Sepharose beads with immobilized GST, GST–Ste11FL (full-length Ste11 protein) or GST–Ste11HMG (HMG-box of Ste11) proteins. After extensive washes, proteins bound to the beads were analysed by immunoblotting with anti-malE (upper) and anti-GST (lower) antibodies, the latter serving as a control for equal loading of the various GST fusion proteins. The malE–Mat1-McFL and malE–Mat1-McHMG proteins were detected in the GST–Ste11FL and GST–Ste11HMG samples and not detected in the GST control sample. The malE control did not co-purify with any of the GST fusion proteins.

relatively high affinity, and the presence of several juxtaposed TR-boxes may therefore substitute for the presence of the M-box.

The molecular mechanism by which the two HMG-box proteins activate transcription from the mfm1 TR-box is presently unknown. Mat1-Mc seems to have dual roles in establishing M-specific transcription. First, it can enhance the binding of Ste11 to the TR-box. Secondly, it binds to M-boxes placed adjacent to the TR-box. What is the function of this binding? One possibility is that it may serve to stabilize the binding of Ste11 to the TR-box. However, the half-life of the ternary Ste11–Mat1-Mc–M-TR-box complex, as measured by competition of binding in EMSAs, is, like that of the binary Ste11–TR-box complex, very short (<10 s, data not shown). Alternatively, binding of Mat1-Mc to the M-boxes may enhance the potential of Ste11 to work as a transcriptional activator. If Mat1-Mc binding is abolished or just weakened by mutagenizing one of the M-boxes, the expression of mfm1 is clearly reduced, consistent with a contribution from M-box-bound Mat1-Mc to transcriptional activation. It was reported recently that the S.cerevisiae HMG-box protein NHP6A/B can potentiate promoter-specific transcriptional activation (Paull et al., 1996).

Under circumstances where binding of Mat1-Mc to the M-box is reduced or abolished, transcription becomes dependent on a pheromone signal. This is true for the two M-specific genes, sxa2 and mfm3, which seem to harbour weaker M-boxes (Table II), and this was also the case when we mutagenized one of the mfm1 M-boxes (Figure 1B, M-box mut2). Similarly, when we inserted a TR-box from ubiquitously expressed genes in the mfm1 promoter, and the gene became expressed in P-cells, this transcription was dependent on a pheromone signal. In P-cells, the Mat1-Mc protein cannot bind to the M-box because it is absent. These findings suggest that Ste11 only activates transcription efficiently if Mat1-Mc is bound to an adjacent M-box or if it is modified somehow by stimulation of the
and HMG2 behaves as both a DNA-binding module and a protein–protein interaction surface (Zwilling et al., 1995; Zappavigna et al., 1996). We find that Mat1-Mc and Ste11 co-immunoprecipitate, and our in vitro observations suggest that the interaction is mediated by their HMG-boxes.

Intriguingly, it has been suggested that proper testis formation in mammals requires both of the two HMG-box proteins SRY and SOX9, and that interaction between these two proteins could be crucial for male-specific gene expression (Foster et al., 1994; Wagner et al., 1994; Wright et al., 1995; Süßbeck et al., 1996). The way in which Mat1-Mc and Ste11 activate cell-specific transcription in fission yeast may provide a model for how SRY and SOX9 in cooperation turn on the male-specific genes. Ste11 and SOX9 both have functions additional to sex determination; Ste11 regulates generally expressed genes during mating (Sugimoto et al., 1991; Petersen et al., 1995) and SOX9 is involved in bone formation (Foster et al., 1994; Wagner et al., 1994; Wright et al., 1995). SRY may have a role equivalent to Mat1-Mc, recruiting the SOX9 transcription factor to male-specific genes.

Materials and methods

Yeast strains, genetic procedures and media

The S. pombe strains used had the following genotypes. EG328 h⁹⁰ smt-O ura4-D18 (Styrkarsdottir et al., 1993); EG432 h⁺ Δmat2.3:LEU2 ura4-D18 (this study); EG494 h⁺ ste11 leu1 ade6-M21 (Sugimoto et al., 1991); EG544 h⁺ Δmat2.3:LEU2 leu1⁺ (Kjærulf et al., 1994); EG545 h⁺ Δmat2.3:LEU2 leu1⁺ (Nielsen et al., 1992); EG850 h⁺ Δste11::LEU2 ura4-D18 (this study); and EG950 h⁺ ste11 ura4-D18 (this study). All experiments in liquid culture were carried out in MSL. (Egel et al., 1994) at 30°C, starting with a cell density of 2<sup>10⁶ cells/ml to induce sexual differentiation, cells were shifted to nitrogen-deficient MSL (MSL lacking arginine) and incubated for 3–5 h. Pheromone signals were provided by mixing the transformants with either P or M cells, depending on the mating type of the transformants, followed by 3–5 h starvation in nitrogen-deficient MSL. To induce sexual differentiation from the mrt promoter (Maundrell, 1990, 1993), transformants were grown in MSL containing 6 μM thiamine, then shifted to fresh medium lacking thiamine and grown for 14 h before starting induction of sexual differentiation.

Standard genetic procedures were carried out as described by Moreno et al. (1991). DNA manipulations were performed according to Sambrook et al. (1989), and amplification by PCR was performed as described by Kocher et al. (1989), using Taq or Pfu polymerase.

Construction of the mfm1–lacZ fusion gene

A 2.2 kb portion of the upstream region of the mfm1 gene was amplified by PCR, using the oligonucleotides 5’GGCGGTACCCGATGGCATGATCG-3’ and 5’GGCGGTACCTTGAGTCGCTCGGATTGAG-3’. Reaction products were cut with BamHI and KpnI, and ligated into BamHI–KpnI-digested pDW232 (Weilguny et al., 1991) harbouring the E.coli lacZ gene, making a fusion of the sixth codon of mfm1 in-frame with the ninth codon of lacZ. Most of the ars1 sequence of this plasmid was removed by partial digestion with MluI and XbaI, producing pSK18. pSK18 was integrated at the mfm1 locus via Smal-directed integration. Correct integration was confirmed by PCR.

Mapping the transcriptional start point of the mfm1–lacZ fusion gene

The oligonucleotide 5’TGGTCGAACCTCATACCTTGCGGCGCGCCG (1124, New England Biolabs), which is complementary to the lacZ mRNA sequence at +47 by downstream of the initiating AUG, was end-labelled with 32P using T4 polynucleotide kinase. Ten μg of total RNA, extracted from nitrogen-starved cells transformed with pSK18, were mixed with an excess of labelled oligonucleotide. Subsequently, primer extension analysis was performed as described by Petersen (1987). Reaction products were analysed by electrophoresis on a 6% polyacrylamide
Two HMG-box proteins activate M cell-specific genes

sequencing gel, adjacent to the sequence of the mfm1–lacZ fusion primed from the same oligonucleotide.

Mutational analysis of the mfm1–lacZ fusion gene

Point mutations were introduced in the mfm1–lacZ fusion gene by sequence overlap extension PCR (Ho et al., 1989). The following oligonucleotides were used: TR-mut1, 5’CGAGACGTCTTGTTCGGGAC together with 5′GCCAGAATTTCGCTGCAG; TR-mut2, 5′CCAAACAGAAATCATCGGTTTTTTTTTTC together with 5′AAAAGACTGAGTTTGTGGTTG; TR-mut, 5′AGAAAACA- GACGTCTTGTTCGGGAC together with 5′GAGATTCTTGTGCTCAGTCTG; and M-box-mut1, 5′CAATTGACTGACAAATGGGCAAC together with 5′TTGTTGTGCGGACC- TATGTGCTAGTCAATTG. All mfm1–lacZ constructs were integrated in the mfm1 locus at the Smal site.

Cycl–lacZ constructs

The cycl–lacZ reporter plasmids were constructed by inserting various copies of annealed oligonucleotides into the XhoI restriction site of the vector pSPAl78 (Lowndes et al., 1992). The following oligonucleotides were used: pcyc::M-box, 5′TCGAGAATCTCAGTTTTTTTTAAAAC together with 5′EcoRI–partial PstI–partial BamHI–partial SmaI–partial dIII–partial Pho 824K; 5′TR-mut1, 5′GAAAATGGGTCCGACCAACAAAGAAGTCTCAG; and 5′TR-mut2, 5′GAAAATGGGTCCGACCAACAAAGAAGTCTCAG annealed to 5′EcoRI–partial PstI–partial BamHI–partial SmaI–partial dIII–partial Pho 824K. Annealed oligonucleotides were used: pcyc::M-box, 5′TCGAGAATCTCAGTTTTTTTTAAAAC together with 5′EcoRI–partial PstI–partial BamHI–partial SmaI–partial dIII–partial Pho 824K; and pcyc::M-box, 5′TCGAGAATCTCAGTTTTTTTTAAAAC together with 5′EcoRI–partial PstI–partial BamHI–partial SmaI–partial dIII–partial Pho 824K. Annealed oligonucleotides were used: pcyc::M-box, 5′TCGAGAATCTCAGTTTTTTTTAAAAC together with 5′EcoRI–partial PstI–partial BamHI–partial SmaI–partial dIII–partial Pho 824K; and pcyc::M-box, 5′TCGAGAATCTCAGTTTTTTTTAAAAC together with 5′EcoRI–partial PstI–partial BamHI–partial SmaI–partial dIII–partial Pho 824K.

HA tagging of Mat1-Mc

The open reading frame (ORF) of mat1-Mc was amplified by PCR using pMcNdeI (Kelly et al., 1988) as template and the two oligonucleotides 5′GGTTCTCCTGCTGACATTATTTAGA and 5′CCGGAGATTCACCAAAATAATATAC. Reaction products were digested with NdeI, end-filled with Klenow fragment, cut with BamHI and ligated into HindIII–BamHI–partial EcoRI-digested pGEX-2T (Pharmacia) in 1 ml of lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 0.1% NP-40, 1 mM EDTA, 5 mM MgCl2, 1 mM DTT, 0.1% SDS–PAGE. For Western analysis, 100 μl of DNA-bound beads were incubated with 1 μg of anti-HA antibodies and 1 μg of affinity-purified anti-Ste11 antibodies. Proteins were detected using enhanced chemiluminescence (ECL; Amersham). Ste11 was immunoprecipitated from 5 μg of soluble protein extracts with 2 μg of affinity-purified anti-Stel1 antibodies by incubating for 1 h at 4°C. The formed complexes were collected with protein A–Sepharose beads (Pharmacia) by incubating for 1 h at 4°C. The pellet was washed three times with lysis buffer and resuspended in SDS sample buffer.

Glutathione–Sepharose chromatography

Ten μg of GST, GST–Ste11, and GST–Ste11ΔI (GST–Ste11–113) were each incubated with 200 μl of a 1:1 slurry of glutathione–Sepharose (Pharmacia) in 1 ml of Crick lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 5 mM MgCl2, 1 mM DTT, 0.25% NP-40, 10 mM NaF, 40 mM β-glycerophosphate, 200 mM orthovanadate, 40 mM pNP, 0.1 mM PMSE, 3.4 μg/ml aprotinin) for 1 h and subsequently washed three times in lysis buffer. Beads bound to GST–proteins were resuspended in 500 μl of lysis buffer and incubated with 250 μg of E.coli extracts containing either malE, malE–Mat1-McC, or malE–Mat1-McCΔI, 1 h at 4°C. Sepharose beads were washed five times with 1 μl of lysis buffer. Proteins bound to the beads were analysed by electrophoresis in a 10% SDS-PAGE and immunoblotted with anti-malE (New England Biolab) and anti-GST antibodies.

Electrophoretic mobility shift assay

T4 polynucleotide kinase was used to label annealed oligonucleotides with [γ-32P]ATP. In a binding reaction, the recombinant GST–Ste11, Ste11 and malE–Mat1-Mc proteins (1–250 μl) were incubated in a volume of 20 μl containing 10 mM Tris (pH 8.0), 5 mM MgCl2, 50 mM NaCl, 0.1% NP-40, 0.1 mM EDTA, 5% glycerol, 5 μg of bovine serum albumin (BSA) and 200 ng of poly(dIdC). After addition of 0.5 ng of probe, the reactions were left at room temperature for 20 min. Samples were electrophoresed through a 6% non-denaturing polyacrylamide gel in 0.5×TBE at 100 V at room temperature.

The following oligonucleotides were used: TCF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; TR-like box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG annealed to 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; LEF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; and TCF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG. These oligonucleotides were used: TCF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; TR-like box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; and TCF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG. These oligonucleotides were used: TCF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; TR-like box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; and TCF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG. These oligonucleotides were used: TCF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; TR-like box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; and TCF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG. These oligonucleotides were used: TCF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; TR-like box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG; and TCF-1 box, 5′GGAGGACTAGACAAGCAATGGGTCCGACCAAAAAAGAAGTCTCAG.
fragments on the beads were washed once in 100 µl of 2 M NaCl/20 mM EDTA and 100 µl of TE. The beads were mixed with 4 µl of loading buffer [72% formamide, 0.04% xylene cyanol, 0.04% bromophenol blue, 7.5 mM EDTA, 40 mM NaOH (freshly diluted)]. The samples were denatured for 5 min at 76°C and electrophoresed through a 6% sequencing gel.

Acknowledgements

We thank Richard Egel for comments on the manuscript and Lee Johnston and Susan Forsburg for the generous donation of plasmids. We acknowledge Jan Castrop for his advice regarding antibody production. This work was supported by The Danish Center for Microbiology and The Danish Natural Science Research Council.

References

Kitaumura,K. and Shimoda,C. (1991) The Schizosaccharomyces pombe mst2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein. EMBO J., 10, 3743–3751.

Two HMG-box proteins activate M cell-specific genes

Received on February 10, 1997; revised on April 2, 1997