The human RNA 3′-terminal phosphate cyclase is a member of a new family of proteins conserved in Eucarya, Bacteria and Archaea

Pascal Genschik1, Eric Billy, Michal Swianiewicz and Witold Filipowicz2

Friedrich Miescher-Institut, PO Box 2543, 4002 Basel, Switzerland
1Present address: Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg, France
2Corresponding author

RNA 3′-terminal phosphate cyclase catalyses the ATP-dependent conversion of the 3′-phosphate to a 2′,3′-cyclic phosphodiester at the end of RNA. The physiological function of the cyclase is not known, but the enzyme could be involved in the maintenance of cyclic ends in tRNA splicing intermediates or in the cyclization of the 3′ end of U6 snRNA. In this work, we describe cloning of the human cyclase cDNA. The purified bacterially overexpressed protein underwent adenylation in the presence of [α-32P]ATP and catalysed cyclization of the 3′-terminal phosphate in different RNA substrates, consistent with previous findings. Comparison of oligoribonucleotides and oligodeoxyribonucleotides of identical sequence demonstrated that the latter are ~500-fold poorer substrates for the enzyme. In Northern analysis, the cyclase was expressed in all analysed mammalian tissues and cell lines. Indirect immunofluorescence, performed with different transfected mammalian cell lines, showed that this protein is nuclear, with a diffuse nucleoplasmic localization. The sequence of the human cyclase has no apparent motifs in common with any proteins of known function. However, inspection of the databases identified proteins showing strong similarity to the enzyme, originating from as evolutionarily distant organisms as yeast, plants, the bacterium Escherichia coli and the archaeon Methanococcus jannaschii. The overexpressed E.coli protein has cyclase activity similar to that of the human enzyme. The conservation of the RNA 3′-terminal phosphate cyclase among Eucarya, Bacteria and Archaea argues that the enzyme performs an important function in RNA metabolism.

Keywords: adenylylation/cyclic phosphate/RNA ligation/RNA modification/RNA processing

Introduction

RNA 3′-terminal phosphate cyclase, an enzyme that catalyses conversion of a 3′-phosphate group to the 2′,3′-cyclic phosphodiester at the 3′ end of RNA, has been identified in extracts of HeLa cells and Xenopus nuclei (Filipowicz and Shatkin, 1983; Filipowicz et al., 1983). The HeLa cell cyclase has been purified and its mechanism of action studied (Filipowicz et al., 1985; Reinberg et al., 1985; Vicente and Filipowicz, 1988; reviewed by Filipowicz and Vicente, 1990). The cyclization of the 3′-terminal phosphate, catalysed by the enzyme, occurs in three steps:

(i) Enzyme + ATP → Enzyme–AMP + PP;
(ii) RNA-N3′p + Enzyme–AMP → RNA-N3′pp5′A + Enzyme;
(iii) RNA-N3′pp5′A → RNA-Np + AMP

Support for step (i) comes from identification of the covalent cyclase–AMP complex and the ability of 3′-phosphorylated RNA not the 3′-OH-terminated RNA to release AMP from the preformed cyclase–AMP complex (Filipowicz et al., 1985, Reinberg et al., 1985, Vicente and Filipowicz, 1988). Step (ii) is inferred from experiments demonstrating accumulation of the RNA-N3′pp5′A molecules when the ribose at the RNA 3′-terminus is replaced with the 2′-deoxy- or 2′-O-methylribose (Filipowicz et al., 1985). Reaction (iii) probably occurs non-enzymatically as the result of nucleophilic attack by the adjacent 2′-OH on the phosphorus in the phosphodiester linkage.

The biological role of the cyclase remains unknown, but the enzyme likely functions in some aspects of cellular RNA processing. The anabolic function of the 2′,3′-cyclic phosphate in RNA first emerged when it was found that eukaryotic RNA ligases require 2′,3′-cyclic ends for RNA ligation (Konarska et al., 1981, 1982; Filipowicz and Shatkin, 1983; Filipowicz et al., 1983; Furneaux et al., 1983; Greer et al., 1983a; Schwartz et al., 1983; Perkins et al., 1985; Pick et al., 1986; reviewed by Filipowicz and Gross, 1984; Westaway and Abelson, 1995). This requirement applies to both the non-organellar RNA ligases characterized to date, one of which ligates RNA ends via the unusual 3′,5′-phosphodiester, 2′-phosphomonoester linkage, while the other joins the ends via the regular 3′,5′-phosphodiester (reviewed by Filipowicz and Gross, 1984; Phizicky and Greer, 1993; Westaway and Abelson, 1995). The involvement of the two RNA ligases in nuclear pre-tRNA splicing is well documented (Filipowicz et al., 1983; Gegenheimer et al., 1983; Greer et al., 1983a; Laski et al., 1983; Stange and Beier, 1987; Zillmann et al., 1991; Phizicky et al., 1992) but these enzymes might also function in the ligation of other natural RNA molecules such as virusoids and viroids (Branch et al., 1982; Kikuchi et al., 1982; Kiberstis et al., 1985). This possibility is supported by the observation that, while yeast RNA ligase shows a strong preference for tRNA halves (Greer et al., 1983a; Phizicky et al., 1986), plant and mammalian RNA ligases also efficiently ligate artificial non-tRNA substrates (Konarska et al., 1981, 1982; Filipowicz et al., 1983; Furneaux et al., 1983; Schwartz et al., 1983; Perkins et al., 1985; Pick et al., 1986). Although the splicing endonucleases directly generate 5′-tRNA halves carrying 2′,3′-cyclic phosphate, during tRNA splicing reactions (Peebles et al., 1983; Gandini-Attardi et al., 1985; Stange...
and Beier, 1987; Rauhut et al., 1990), it is possible that other putative substrates depend upon the action of RNA 3'-terminal phosphate cyclase to form the cyclic phosphodiester ends. It is of interest, that the only cellular RNA ligase identified to date in bacteria also requires 2',3'-cyclic ends for ligation (Greer et al., 1983b; Arn and Abelson, 1996).

Another finding uncovering the potential role of the 2',3'-cyclic phosphate in RNA metabolism was the demonstration that the U6 spliceosomal snRNA in species as diverse as humans, fruit fly and soybean has a cyclic 2',3'-phosphodiester at the 3'-terminus. The mechanism and enzymes responsible for this modification are not known, but RNA 3'-phosphate cyclase is one obvious candidate (Lund and Dahlberg, 1992).

With the long-term aim of determining the function of the cyclase in cellular RNA metabolism we have cloned the cDNA encoding the human cyclase. We have analysed the expression pattern and subcellular localization of the enzyme in mammalian cells. Furthermore, we report that proteins showing strong similarity to the human cyclase are not only present in eukaryotes, but also in Bacteria and Archaea. We show that the bacterial overexpressed Escherichia coli protein has RNA 3'-phosphate cyclase activity similar to that of the human enzyme.

Results

Cloning of the human cyclase cDNA

The cyclase was purified from HeLa cells by a modification of the procedure described previously (Filipowicz and Vicente, 1990; see Materials and methods). Purified protein was subjected to tryptic digestion and four peptides were microsequenced. Different combinations of degenerate oligodeoxyribonucleotide primers were used in order to clone, using a PCR approach, a cDNA encoding the enzyme. One amplified 668 bp DNA fragment contained an ORF encoding the peptides pep2 and pep3 (Figure 1) not used for the design of PCR primers. This partial cDNA was used as a probe to screen a HeLa λgt11 cDNA library. Out of 1×10^6 recombinant phages, eight positive clones were isolated. Their inserts were analysed by restriction mapping and sequencing of the ends. The longest cDNA obtained from this screening [1349 nt, not including the poly(A) tail] extended to position 191 (Figure 1).

The upstream coding and non-coding sequence of the clone was obtained by: (i) characterizing additional PCR-generated clones using the λgt11 library DNA as a template; (ii) sequencing the human CpG island genomic clone (DDBJ/EMBL/GenBank accession number Z57130; Cross et al., 1994) corresponding to the upstream region of the cyclase gene; and (iii) identifying an EST clone (Z42277) representing the upstream portion of the cDNA (see Materials and methods).

Conceptual translation of the cDNA predicted a 39.4 kDa protein of 366 amino acids with an isoelectric point of 7.8. All the microsequenced peptides are present in the deduced protein (Figure 1). The sequence surrounding the initiation codon (TCCCCCATGG) is similar to the consensus (GCCACCATGG) established for vertebrates mRNAs (Kozak, 1987). The 170-nt 5'-terminal leader sequence contains one additional ATG, present in a much less favourable context, CCAGGCATGA. Translation initiated at this ATG would terminate five codons downstream (Figure 1).

Activity of the overexpressed human protein

The coding region of the cDNA was subcloned into an inducible expression vector, pGEX-2T, to express the cyclase as a fusion protein with glutathione S-transferase at the N-terminus. The recombinant protein was over-produced in E.coli and purified using glutathione-Sepharose 4B resin (Figure 2A). The purified fusion protein, migrating at ~60 kDa, still contains material with a lower molecular mass (~30 kDa) which likely corresponds to polypeptides prematurely terminated at rare codons present in the region encoding the N-terminal portion of the cyclase (see Figure 2A and its legend).

Several lines of evidence indicated that the overexpressed fusion protein has RNA 3'-terminal phosphate cyclase activity. First, incubation with [α-32P]ATP resulted in the time-dependent labelling of the ~60-kDa protein (Figure 2B), consistent with previous findings demonstrating formation of a covalent cyclase–AMP complex, an intermediate in the cyclization reaction (see Introduction). Second, two different oligoribonucleotides, CCCACCCGGGp* and AAAAAAAAGGp*, both radiolabelled at the 3'-terminal phosphate, were tested as cyclization substrates (Figure 3A). Incubation of either oligoribonucleotide with increasing amounts of the fusion protein resulted in formation of molecules with a 3'-terminal phosphate resistant to the action of calf intestine phosphatase (CIP), a property expected for 2',3'-cyclic phosphodiester ends. The purine-rich and pyrimidine-rich substrates were modified with comparable efficiencies, in agreement with the previous findings that cyclase can utilize molecules with different sequences and base composition as substrates (Filipowicz et al., 1983; Reinberg et al., 1985; Filipowicz and Vicente, 1990). Third, it was found previously that, for the cyclase purified from HeLa cells, ATP is the best cofactor, but GTP, CTP and UTP (but not dATP) can also act as cofactors in the reaction, although much less efficiently (Vicente and Filipowicz, 1988). As shown in Figure 3B, the overexpressed protein has a similar nucleotide specificity. Fourth, TLC analysis was performed to demonstrate directly that incubation of AAAAAAAAGGp* with the overexpressed protein results in formation of the 2',3'-cyclic phosphate at the terminus. Following incubation with either the recombinant cyclase or the enzyme purified from HeLa cells, ATP is the best cofactor, but GTP, CTP and UTP (but not dATP) can also act as cofactors in the reaction, although much less efficiently (Vicente and Filipowicz, 1988). As shown in Figure 3B, the overexpressed protein has a similar nucleotide specificity. Fourth, TLC analysis was performed to demonstrate directly that incubation of AAAAAAAAGGp* with the overexpressed protein results in formation of the 2',3'-cyclic phosphate at the terminus. Following incubation with either the recombinant cyclase or the enzyme purified from HeLa cells, ATP is the best cofactor, but GTP, CTP and UTP (but not dATP) can also act as cofactors in the reaction, although much less efficiently (Vicente and Filipowicz, 1988). As shown in Figure 3B, the overexpressed protein has a similar nucleotide specificity. Fourth, TLC analysis was performed to demonstrate directly that incubation of AAAAAAAAGGp* with the overexpressed protein results in formation of the 2',3'-cyclic phosphate at the terminus. Following incubation with either the recombinant cyclase or the enzyme purified from HeLa cells, ATP is the best cofactor, but GTP, CTP and UTP (but not dATP) can also act as cofactors in the reaction, although much less efficiently (Vicente and Filipowicz, 1988). As shown in Figure 3B, the overexpressed protein has a similar nucleotide specificity. Fourth, TLC analysis was performed to demonstrate directly that incubation of AAAAAAAAGGp* with the overexpressed protein results in formation of the 2',3'-cyclic phosphate at the terminus. Following incubation with either the recombinant cyclase or the enzyme purified from HeLa cells, ATP is the best cofactor, but GTP, CTP and UTP (but not dATP) can also act as cofactors in the reaction, although much less efficiently (Vicente and Filipowicz, 1988). As shown in Figure 3B, the overexpressed protein has a similar nucleotide specificity. Fourth, TLC analysis was performed to demonstrate directly that incubation of AAAAAAAAGGp* with the overexpressed protein results in formation of the 2',3'-cyclic phosphate at the terminus.
RNA 3'-terminal phosphate cyclase conservation

Fig. 1. The nucleotide and deduced amino acid sequences of the human cDNA encoding RNA 3'-terminal phosphate cyclase. The short (5-amino-acid) ORF in the 5'-leader region is underlined. Termination codons in the leader sequence are overlined. The putative polyadenylation signal is double underlined. Amino acid sequences of the sequenced peptides (pep1, pep2, pep3 and pep4) are shaded. It has not been directly established that position 1 indeed represents the start of transcription.

TLC in solvent B (data not shown). Furthermore, in another set of experiments, it was found that oligoribonucleotides containing p*Cp ligated at the 3' end, N_{p}*Cp, were converted into N_{p}*p*Cp products upon incubation with the overexpressed protein (data not shown). All these results support the conclusion that the recombinant protein has RNA 3'-terminal phosphate cyclase activity.

Comparison of RNA and DNA molecules as substrates

We have previously shown that oligoribonucleotides containing terminal 2'-deoxy- or 2'-O-methylribose can be converted, upon incubation with the cyclase and ATP, into products bearing the 3'-terminal structures dN_{p}p^{5}A and N_{m}m^{3}p^{5}A, respectively (Filipowicz et al., 1985). These experiments led to the proposal that cyclization of the 3'-phosphate in RNA proceeds via formation of a terminal N_{p}p^{5}A intermediate. However, these findings also raised the possibility that DNA molecules bearing a phosphate at the 3'-terminus might be physiological substrates for the enzyme.

Two different assays were used to compare the ability of the 3'-phosphorylated oligoribonucleotide AAAAUAAG-AAG^{p}, referred to as RNA_{p}p, and the oligodeoxyribonucleotide of equivalent sequence AAAATAAAAAAG^{p}, referred to as DNA_{p}p, to act as substrates for the enzyme. Using a competition assay (Figure 5A), it was found that an ~500-fold higher concentration of DNA_{p}p than RNA_{p}p (or another oligoribonucleotide, CCCCACCCCG^{p}), is required to compete with the cyclization of the radio-
Purification and labelling with α-32P]ATP of the overexpressed human cyclase. (A) Purified and overexpressed human cyclase (GST fusion, 1.8 μg; lane 2) analysed by SDS–PAGE and Coomassie blue staining. The ~30 kDa material most probably corresponds to polypeptides prematurely terminated at rare codons present in the upstream part of the cyclase cDNA. Since cyclase expression levels in bacteria were very low, further purification of the protein was not attempted. Extracts prepared from mock-transfected E.coli cells did not yield either the ~60 or ~30 kDa bands upon fractionation on the glutathione–Sepharose 4B column (data not shown). (B) Labelling of the cyclase–GST fusion protein with α-32P]ATP. A total of 20 ng of cyclase was incubated under assay conditions in the presence of α-32P]ATP for 1 min (lane 1), 30 min (lane 2), 1 h (lane 3), 3 h (lane 4) or 6 h (lane 5) at 25°C. Products of the reaction were analysed by SDS–PAGE and autoradiography. Positions of protein size markers (in kDa) are indicated.

labelled AAAAUAAAAGp* substrate. A mixture of 3'-phosphorylated oligodeoxyribonucleotides [(dN)$_n$pdN$_3$p, $n = 8–14$], obtained by a limited digestion of a synthetic 80-mer oligodeoxyribonucleotide with micrococcal nuclease was also a poor competitor in the reaction (Figure 5A). A 3'-hydroxyl-terminated oligodeoxyribonucleotide (DNA$_3$OH) did not compete with the cyclization of RNA$_3$p* even when added at 10 000-fold excess (Figure 5A), while a similar excess of RNA$_3$OH inhibited the reaction by ~40%. This small degree of inhibition observed in the presence of a large excess of RNA$_3$OH is most probably due to the traces of hydrolysis of the oligoribonucleotide, resulting in the formation of fragments bearing the 3'-phosphate group.

In the second assay, the oligoribo- and oligodeoxyribonucleotides were compared for their ability to release AMP from the preformed adenylylated enzyme complex (Reinberg et al., 1985). The complex was formed by preincubation of the fusion protein with α-32P]ATP. Incubations were then continued in the presence of increasing quantities of different oligonucleotides. Addition of 22 fmol RNA$_3$p decreased the amount of the complex by ~95% (Figure 5B, lane b) while no complex was detected when 220 or 2200 fmol RNA$_3$p was added in the second incubation (Figure 5B, lanes c and d). In contrast, incubation in the presence of 220 or 2200 fmol of either RNA$_3$OH, DNA$_3$p or DNA$_3$OH (lanes c and d) did not result in the release of the label from the preformed cyclase–AMP complex. In the presence of still higher amounts (20 and 200 pmol), DNA$_3$p but not DNA$_3$OH resulted in AMP release from the complex (Figure 5B, lanes e and f). In another set of experiments we have directly demonstrated that prolonged incubation of 3'-phosphorylated oligo-

Intracellular localization of the cyclase

The intracellular localization of the cyclase was determined by an epitope-tagging approach combined with indirect immunofluorescence. The coding region of the cyclase cDNA was cloned in the vector pBact-myc to express the enzyme containing a myc epitope fused in frame at the N-terminus. The plasmid expressing the tagged protein was transfected into HeLa cells, rat glioma C6 cells and mouse embryonal carcinoma P19 cells. As a control, HeLa cells were transfected with a plasmid expressing the spliceing factor ASF/SF2 (Manley and Tacke, 1996) fused in frame to the same epitope. The cells were processed for immunofluorescence microscopy, using a mouse anti-myc monoclonal antibody and FITC-conjugated goat anti-mouse antibody (Figure 6). Images were analysed with the help of the confocal laser scanning microscope. Indirect
RNA 3'-terminal phosphate cyclase conservation

Fig. 4. Analysis of the reaction products by TLC. Incubations with the cyclase were essentially as described in Materials and methods and contained 0.2 mM ATP, 60 fmol AAAAUAAAAG p* and either 50 ng of partially purified HeLa cell cyclase [the poly(A)–Sepharose fraction (Vicente and Filipowicz, 1988); panel A, lanes 3 and 4] or 40 ng of the overexpressed protein (panel A, lanes 5 and 6, and panel B). Incubations were for 20 min at 25°C. In (A) aliquots of the reactions were either applied to TLC without any additional treatment (lanes 1, 3 and 5) or were digested with nuclease P1 (lanes 2, 4 and 6). (B) Putative pG=p*, obtained by digestion of the reacted AAAAUAAAAG p* substrate with nuclease P1 and isolated by cellulose TLC in solvent B, was subjected to treatment with the following enzymes: none (lane 1); CIP (lane 2); RNase T2 (lane 3); RNase T2 followed by nuclease P1 (lane 4); CNPase (lane 5); CNPase followed by nuclease P1 (lane 6). Chromatography was in solvent A. Positions of nucleotide markers are indicated.

immunofluorescence indicated that in HeLa and C6 cells, 98–99% of cyclase localizes to the nucleus and shows a diffuse distribution throughout the nucleoplasm with the protein being excluded from the nucleoli. The remaining 1–2% of fluorescence was seen in the cytoplasm (Figure 6, panels A–D; and the legend). The ratio of nuclear to cytoplasmic staining was independent of the amount of plasmid used for transfection or the time (24–48 h) at which cells were collected after transfection (data not shown). Assessment of the significance of the low cytoplasmic staining seen with the HeLa and C6 cells will require experiments with specific anti-cyclase antibodies. With the mouse P19 cells, the protein was found exclusively in the nucleoplasm and no cytoplasmic staining was observed (Figure 6, panel E). With all three cell lines, no signal was obtained in mock-transfected cells (data not shown) or in the non-transfected present in the same field as transfected cells (Figure 6, panels A–E). Likewise, no fluorescence was detectable when the anti-myc antibody was omitted (not shown). The diffuse nucleoplasmic staining seen in the cyclase cDNA-transfected cells was clearly different from the characteristic speckled staining observed with HeLa cells expressing the splicing factor ASF/SF2 (Figure 6, panel F; A.Krainer, personal communication). The monoclonal mouse antibody against the spliceosomal protein U2B', followed by FITC-conjugated goat anti-mouse antibody, also yielded a speckled immunofluorescence pattern similar to that seen for ASF/SF2 (data not shown).

Cyclase mRNA in different human tissues and cell lines

Expression of mRNA encoding the cyclase was determined in various cell lines (Figure 7A) and different human tissues (Figure 7B) by Northern blot analysis. Cyclase is expressed ubiquitously. Two hybridizing RNA species, of ~1.8 and 3 kb, were detected. The 1.8-kb mRNA corresponds in size to the cDNA characterized in this work; the identity of the longer RNA is unknown. The ratio between the two RNAs varies among tissues and cell lines. The 3-kb transcript is present at a relatively low level in Namalwa cells, HeLa cells, and in heart and placenta (between 21% and 30% of total transcripts as determined by PhosphorImager quantification). Among the tissues analysed, the highest cyclase mRNA level was observed in skeletal muscle.

Cyclase is conserved from bacteria to humans

The sequence of the cloned human cyclase was used for database searches. Several ORFs encoding proteins of unknown function, but sharing significant similarity with the cloned protein, were identified in different organisms. These organisms include Drosophila melanogaster, Caenorhabditis elegans, Schizosaccharomyces pombe, Saccharomyces cerevisiae, Toxoplasma gondii, the bacterium E.coli and the archaeon Methanococcus jannaschii. Moreover, we have identified EST clones encoding cyclase-like proteins in mouse, Arabidopsis thaliana and zebrafish, and also an EST encoding another cyclase-like protein in humans (see legend to Figure 8). The human EST clone has been sequenced and the deduced protein encoded by it, although not full length, is included in the alignment shown in Figure 8. The two human proteins, referred to in Figure 8 as Hs1 and Hs2 show 30% identity and 52% similarity. The identified mouse ESTs encode counterparts of each of the two human proteins (data not shown). The human cyclase characterized in this work and the other cyclase-like proteins listed in Figure 8 have no apparent structural features or motifs in common with proteins of known function deposited in various databases (see Discussion).

The overexpressed E.coli protein has cyclase activity

The protein encoded by the E.coli gene having similarity with the human cyclase cDNA has been overexpressed in
Fig. 5. Activity of oligoribo- or oligodeoxyribonucleotides containing either 3′-p or 3′-OH termini in the competition (A) and AMP release (B) assays. (A) Cyclase assays were performed as described in Materials and methods. They contained 360 pg of the overexpressed cyclase, 40 fmol of AAAAUAAAAG\(^3\)p\(^*\)p and different unlabelled oligonucleotides, acting as substrates or competitors, at molar excess over AAAAUAAAAG\(^3\)p\(^*\) as indicated. The 3′-OH-containing AAAATAAAAAG\(^3\)p\(^*\) (DNA\(^3\)OH) was obtained either by chemical synthesis (C) or by dephosphorylation of DNA\(^3\)p with CIP (C). (B) AMP release assays were performed as described in Materials and methods. Different amounts of substrates were added: none (lane N); 2 fmol (lane a); 22 fmol (lane b); 220 fmol (lane c); 2200 fmol (lane d); 20 pmol (lane e) and 200 pmol (lane f).

E. coli as a fusion protein with the 6×His tag at the C-terminus. The protein was purified using the Ni–NTA resin; its purity was >95% as judged after Coomassie blue staining of the gel (Figure 9A). Two oligoribonucleotides, CCCACCCCG\(^3\)p\(^*\) and AAAAUAAAAG\(^3\)p\(^*\), used for assaying activity of the human cyclase, were also found to act as substrates for the E. coli protein (Figure 9B). TLC analysis directly demonstrated that incubation with the overexpressed E. coli protein resulted in the cyclization of the 3′-terminal phosphate in the AAAAUAAAAG\(^3\)p\(^*\) (Figure 10, panels A and B) and AAAAUAAAAG\(^3\)p\(^*\)C\(^3\)p (panel C) substrates. In addition to analyses with nuclease P1, RNase T2 and CNPase, similar to those shown in Figure 4, the putative pG\(^3\)-p\(^*\) obtained by nuclease P1 digestion was characterized by treatment with RNase T1 and alkali. As expected, digestion with RNase T1 (Figure 10B, lanes 5–7) yielded results identical to those seen with RNase T2 (Figure 10B, lanes 2–4). Also as expected, mild alkaline treatment produced a mixture of pG\(^3\)-p\(^*\) and pG\(^3\)p\(^*\). Together, these results demonstrate that the bacterial protein has RNA 3′-terminal phosphate cyclase activity.

Discussion

RNA 3′-terminal phosphate cyclase activity was previously demonstrated in nuclear extracts from HeLa cells and Xenopus oocytes (Filipowicz and Shatkin, 1983; Filipowicz et al., 1983, 1985; Reinberg et al., 1985; reviewed by Filipowicz and Vicente, 1990). Cloning of the cDNA encoding the human cyclase, described in this work, allowed us to identify cDNAs and/or genes originating from different organisms which encode proteins showing significant similarity with the human enzyme. These organisms include diverse eukaryotes such as...
as mammals, insects, worms, plants and yeast and also the bacterium E.coli and the archaeon M.jannaschii. Moreover, inspection of the EST clones deposited in the GenEMBL database, followed by additional sequence analyses, revealed that the human and mouse genomes contain at least one additional gene encoding the cyclase-like protein (Figure 8). Apart from the human enzyme, there is still no evidence that other eukaryotic proteins listed in Figure 8 represent RNA cyclases. However, as demonstrated in this work (Figures 9 and 10), the E.coli protein efficiently catalysed the conversion of the 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of three different oligoribonucleotide substrates. The biochemical properties and substrate specificity of the bacterial protein are very similar to those of the human enzyme (our unpublished data). These results strongly suggest that other proteins listed in Figure 8 also have RNA cyclase activity. Taken together, the data indicate that RNA cyclase is a widespread enzyme conserved among three kingdoms: Eucarya, Bacteria and Archaea. However, no obvious homologues to the cyclase could be found in the streamlined genomes of Haemophilus influenzae and Mycoplasma genitalium (Fleischmann et al., 1995; Fraser et al., 1995).

Proteins belonging to the family of RNA cyclases listed in Figure 8 have no apparent structural features in common with other known proteins. In particular, no sequences corresponding to known nucleotide-binding motifs or RNA-binding domains could be identified. Previous analysis of the stability of the covalent cyclase–AMP complex suggested that AMP is linked to the protein via a phosphoamidate linkage, possibly involving the ε-amino group of a lysine (Reinberg et al., 1985; Vicente and Filipowicz, 1988). However, it should be noted that no lysine is present at conserved position in all proteins aligned in Figure 8. With respect to the ability to transfer the nucleotidyl group from the protein–NMP intermediate to the terminal phosphate or pyrophosphate in nucleic acids, the cyclase resembles DNA ligases and capturing enzymes (reviewed by Shuman and Schwer, 1995), but none of the sequence motifs shared by these enzymes (Shuman and Schwer, 1995) are apparent in the RNA cyclase.

Hinton et al. (1982) have observed that in the absence of its natural 5'-phosphorylated substrate, T4 bacteriophage RNA ligase can inefficiently convert an oligoribonucleotide terminal 3'-phosphate to a 2',3'-cyclic form via a mechanism which is, most probably, similar to that of RNA cyclase. We have tested whether, in the absence of the 3'-phosphorylated end, human cyclase has the potential to activate the 5'-terminal phosphate in pAAAAA-AAAG. No evidence of A5' pp3'A formation was found, even when a large excess of the enzyme was used. Similarly, no evidence of cyclase-catalysed inter- or intramolecular ligation of either 5' or 3'-phosphorylated oligoribonucleotides was obtained (our unpublished results). Sequence comparisons between RNA cyclases and known RNA ligases (Rand and Gait, 1984; Phizicky et al., 1986; Arn and Abelson, 1996) did not reveal significant similarities.

Previous experiments indicated that partially or highly purified HeLa cell cyclase can use a variety of 3'-phosphorylated RNA molecules as substrates, ranging from synthetic oligoribonucleotides such as AUpGp, (Up)pGp and (Ap)pAp to natural RNAs such as tRNAs, 5S rRNA or tobacco mosaic virus RNA fragments modified by ligation of pGp, pAp or pCp (Filipowicz et al., 1983, 1985; Reinberg et al., 1985; Vicente and Filipowicz, 1988; Filipowicz and Vicente, 1990). Consistent with this, the recombinant RNA cyclase was able to cyclize both purine-rich (AAAAAAGGApGp) and pyrimidine-rich (CCCCAC-CCCGp) oligoribonucleotides with comparable efficiency (Figure 3). Likewise, the 3'-phosphate in AAAAUAAGGCp, CCCACCCCGCp and AUpGp underwent cyclization in the presence of the recombinant enzyme (data not shown). It was demonstrated previously that nucleoside 3'-phosphates and nucleoside 5',3'-diphosphates do not act as substrates for the cyclase (Filipowicz et al., 1983; Reinberg et al., 1985; Filipowicz and Vicente, 1990). In agreement with this, using competition and AMP release assays similar to those shown in Figure 5, we have
Fig. 8. Comparison of amino acid sequences of the cloned human cyclase (Hs1) and other cyclase-like proteins encoded by genes or cDNAs originating from different organisms. Hs2, partial human sequence deduced from the EST clone (DDBJ/EMBL/GenBank accession number D82436). This clone, kindly provided by Dr J. Takeda, Gunma University, Japan, was completely sequenced by us on both strands. Dm, partial sequence deduced from the genomic clone of *D. melanogaster* (X04754 and M15898) after removal of two putative introns (67 and 54 nt). Ce, sequence based on a genomic (cosmid) clone from *C. elegans* (U58758), after removal of two putative introns (each 47 nt); also supported by the EST clone T00099. Sp, sequence deduced from the *S. pombe* cosmid c12G12 (Z66568; Swissprot Q09870). Sc, protein deduced from the gene sequenced within the yeast *S. cerevisiae* genome project (Z74752). Ec, sequence deduced from the *E. coli* genomic fragment (U18997), following resequencing of the gene. Mj, sequence deduced from the sequenced genome of *M. jannaschii* (Bult *et al.*, 1996). ESTs encoding cyclase-like proteins (not shown in the figure) were also identified in the following organisms: mouse (DDBJ/EMBL/GenBank accession numbers W80010 and AA007803, encoding the counterparts of Hs1 and Hs2, respectively), zebrafish (H56797), *A. thaliana* (Z34762 and Z34936) and *T. gondii* (N60808). Multiple sequence alignment was performed with the ClustalW 1.5 program (Thompson *et al.*, 1994) using the complete multiple alignment protocol with default parameters. Alignment was improved manually. Identical amino acids and amino acids conserved in at least 50% of sequences are indicated by black and grey boxes, respectively.

found that these compounds, as well as 3'-phosphorylated diribonucleotides, do not act as substrates for the recombinant enzyme (our unpublished results). Hence, although the cyclase has little sequence or terminal nucleotide specificity, it appears to require a trinucleotide as the minimal substrate length. More systematic studies are needed to compare the relative activities of different natural and synthetic RNAs as substrates for the cyclase.

We have shown previously that oligoribonucleotides containing terminal 2'-deoxy- or 2'-O-methylribose can be converted, in the presence of cyclase and ATP, into products bearing the 3'-terminal structures dN3′pp5′A and dN3′pp5′G.
RNA 3′-terminal phosphate cyclase conservation

Fig. 9. Purification and activity of the overexpressed E. coli cyclase. (A) Purification of the protein fused to the 6×His tag as monitored by SDS–PAGE. Lane 1, size markers; lane 2, 40 μg of extract from the induced E. coli culture; lane 3 and 4, 3 and 9 μg of the purified protein, respectively. (B) Comparison of CCCCACCCCG p* and AAAAUAAAAG p* substrates. Assays were performed as described in Materials and methods, with 50 fmol of the substrate added per reaction. For other details, see legends to Figures 2 and 3.

Fig. 10. Analysis of the reaction products by TLC. Incubations with the E. coli cyclase were essentially as described in Materials and methods and contained 0.2 mM ATP, 60 fmol of either AAAAUAAAAG p* (A and B) or AAAAUAAAAGp*Cp (C) and 6 ng of the overexpressed E. coli protein. Incubations were for 20 min at 25°C. (A) Aliquots of the reactions were either applied to TLC without any additional treatment (lane 1) or were digested with nuclease P1 (lane 2), nuclease P1 followed by CIP (lane 3) or nuclease P1 followed by RNase T2 (lane 4). (B) Putative pG>p*, obtained by digestion of the reacted AAAAUAAAAG p* with nuclease P1 and isolated by the cellulose TLC in solvent B, was subjected to treatment with the following enzymes: none (lane 1); RNase T2 (lane 2); RNase T2 followed by nuclease P1 (lane 3) or CIP (lane 4); RNase T1 (lane 5); RNase T1 followed by nuclease P1 (lane 6) or CIP (lane 7); CNPase (lane 8); CNPase followed by nuclease P1 (lane 9) or CIP (lane 10). Lane 11, partial alkaline hydrolysis. (C) Aliquots of the cyclase reaction containing AAAAUAAAAGp*Cp as substrate were either applied to TLC without any additional treatment (lane 1) or were digested with either nuclease P1 (lane 2), nuclease P1 followed by RNase T2 (lane 3) or nuclease P1 followed by CNPase (lane 4). Chromatography was in solvent A. Positions of nucleotide markers are indicated.

Nm3 pp5 A, respectively (Filipowicz et al., 1985). These findings raised the possibility that 3′-phosphorylated DNA molecules rather than, or in addition to, RNA might be the physiological substrates for the cyclase. Although, to our knowledge, known DNA recombination, repair or ligation pathways do not involve 3′-phosphorylated intermediates (for review, see Kornberg and Baker, 1991), such molecules can be generated under some conditions in vitro (Kimball et al., 1993; Christiansen et al., 1994; Latham and Lloyd, 1995; Bhagwat and Gerlt, 1996). For example, eukaryotic topoisomerase I, which transiently attaches to the 3′-phosphate DNA through a phosphoester linkage, can be inefficiently displaced by water at slightly alkaline conditions (pH 7.5–10), yielding 3′-phosphorylated molecules as products (Christiansen et al., 1994). The FLP site-specific recombinase from S. cerevisiae is another enzyme which transiently reacts with the 3′-phosphoryl group at the site of the breaks. In the presence of hydrogen peroxide, the Flp target phosphodiester in DNA can be cleaved hydrolytically, generating 3′-phosphate and 5′-OH ends (Kimball et al., 1993; Sadowski, 1995). Activation of the DNA 3′-phosphate to dN3 pp5 A (catalysed by the cyclase), followed by the nucleophilic attack of the 5′-hydroxyl (catalysed by a hypothetical DNA ligase), could represent a pathway repairing breaks similar to those described above.

To address the possibility that cyclase participates in DNA-related rather than RNA-related transactions, we have compared the activity of oligoribo- and oligodeoxyribonucleotides of identical sequence, using competition and AMP release assays. These experiments revealed that oligoribonucleotides are ~500-fold better substrates for the human cyclase than oligodeoxyribonucleotides (Figure 5). Although these results do not exclude the possibility...
that DNA molecules of a particular sequence or structure act as substrates for the enzyme in vivo, they make it rather unlikely. The findings that, in vitro assays, oligoribonucleotides are much better substrates than oligodeoxyribonucleotides (Figure 5) and that the 3′-phosphate in mono- or diribonucleotides does not undergo cyclization (Filipowicz et al., 1983; Reinberg et al., 1985; Vicente and Filipowicz, 1988; see also above) strongly argue that 3′-phosphate-terminated RNA molecules are indeed the natural substrates of the cyclase.

The physiological role of the cyclase remains unknown. The predominantly nucleoplasmic localization of the enzyme in mammalian cells (Figure 6) suggests that it is involved in RNA processing or other RNA metabolic reactions taking place in the nucleus. Two possible functions can be envisaged. The enzyme might be responsible for cyclization of the 3′-terminal phosphate in U6 snRNA. Lund and Dahlberg (1992) have found that U6 RNA in most eukaryotes investigated contains a 2′,3′-cyclic phosphate end. The mechanism and enzymes responsible for this modification are unknown but it has been proposed that conversion of U6 RNA from the form containing the 3′-terminal oligouridylic acid to one bearing the cyclic phosphate occurs within the spliceosome concurrent with the pre-mRNA splicing reaction (Tazi et al., 1993). RNA ligases involved in pre-rRNA splicing in eukaryotes require 5′-trNA half molecules terminated with cyclic phosphate (see Introduction). Although it has been shown, for both yeast and vertebrates, that the 2′,3′-cyclic phosphate in 5′-rRNA halves is produced as a direct result of cleavage by the splicing endonuclease (Peebles et al., 1983; Gandini-Attardi et al., 1985; Rauhut et al., 1990), it is possible that the cyclase functions to regenerate cyclic ends in 3′-monooester-terminated molecules formed by the action of decyclizing phosphodiesterases. Alternatively, the cyclase could be responsible for cyclizing the 3′-phosphate in substrates other than rRNA halves (see Introduction).

RNA ligases requiring the 2′,3′-cyclic phosphate for ligation are not confined to eukaryotes. Greer et al. (1983b) have identified an RNA ligase in E.coli and other bacteria which ligates the 2′,3′-cyclic phosphate and 5′-hydroxyl end via the 2′,5′-phosphodiester linkage. The E.coli enzyme appears to be specific for ligation of tRNA halves (Arn and Abelson, 1996) but its physiological substrates and the mechanism of production of their cyclic ends remain unknown. tRNA genes in Archaea contain introns which structurally resemble nuclear tRNA gene introns (reviewed by Westaway and Abelson, 1995). Similarly to eukaryotes, the tRNA-splicing endonuclease of the archaeon Halobacterium volcanii produces 5′ half molecules containing the 2′,3′-cyclic phosphate, but the requirements for ligation of tRNA halves in Archaea have not been characterized (Thompson and Daniels, 1988). The processing of the 23S rRNA intron in the archaeon Desulfuroccus mobilis shares many properties with the processing of tRNA gene introns. Interestingly, cleavage of the D.mobilis pre-rRNA by the endonuclease appears to generate splicing intermediates bearing the 3′-phospho- monoester end (Kjems and Garrett, 1988). It is not known whether the terminal phosphate has to undergo cyclization before the ligation step.

Finally, it is possible that the cyclase is not a component of an RNA ligation pathway but modifies the 3′ end for a different purpose, for example, activation of RNA for exonucleolytic degradation. It has been shown that the presence of a terminal 3′-phosphate makes an oligonucleotide largely resistant to 3′→5′ exonucleolytic degradation by snake venom phosphodiesterase. Consistent with the interpretation that this effect is conferred by a strong charge, oligonucleotides bearing a 2′,3′-cyclic phosphate were found to be only marginally less active than 3′-OH-terminated substrates (Richards and Laskowski, 1969; Laskowski, 1971). Identification of physiological substrates of the cyclase and its function in cellular RNA metabolism are subjects of current experimentation.

Materials and methods

Cloning of the human cyclase

Protein purification and peptide sequencing. The cyclase was purified from HeLa cells according to established protocols (Vicente and Filipowicz, 1988) with some modifications. (i) The cyclase was eluted from the heparin-Sepharose column (step 3; Vicente and Filipowicz, 1988) with a linear gradient of 75–450 mM NaCl. Fractions corresponding to pool (Filipowicz et al., 1985), eluting at 260 mM NaCl, were collected and applied, after dialysis, to a poly(A)-Sepharose column (Vicente and Filipowicz, 1988). (ii) The mono-S step (step 5) was omitted. The poly(A)-Sepharose fraction, concentrated and dialysed against buffer C containing 75 mM NaCl, was directly applied to a Blue–Sepharose column. Protein eluting at 0.6 M NaCl (fraction BS-600; Vicente and Filipowicz, 1988) was successively concentrated using Centricron-30 and Microcon-10 filters (Amicon). A total of 10 μg of the protein was separated in 10% SDS–PAGE. Proteins were blotted ontop ofphosphate end. The mechanism and enzymes responsible for this modification are unknown but it has been proposed that conversion of U6 RNA from the form containing the 3′-terminal oligouridylic acid to one bearing the cyclic phosphate occurs within the spliceosome concurrent with the pre-mRNA splicing reaction (Tazi et al., 1993). RNA ligases involved in pre-rRNA splicing in eukaryotes require 5′-trNA half molecules terminated with cyclic phosphate (see Introduction). Although it has been shown, for both yeast and vertebrates, that the 2′,3′-cyclic phosphate in 5′-rRNA halves is produced as a direct result of cleavage by the splicing endonuclease (Peebles et al., 1983; Gandini-Attardi et al., 1985; Rauhut et al., 1990), it is possible that the cyclase functions to regenerate cyclic ends in 3′-monooester-terminated molecules formed by the action of decyclizing phosphodiesterases. Alternatively, the cyclase could be responsible for cyclizing the 3′-phosphate in substrates other than rRNA halves (see Introduction).

RNA ligases requiring the 2′,3′-cyclic phosphate for ligation are not confined to eukaryotes. Greer et al. (1983b) have identified an RNA ligase in E.coli and other bacteria which ligates the 2′,3′-cyclic phosphate and 5′-hydroxyl end via the 2′,5′-phosphodiester linkage. The E.coli enzyme appears to be specific for ligation of tRNA halves (Arn and Abelson, 1996) but its physiological substrates and the mechanism of production of their cyclic ends remain unknown. tRNA genes in Archaea contain introns which structurally resemble nuclear tRNA gene introns (reviewed by Westaway and Abelson, 1995). Similarly to eukaryotes, the tRNA-splicing endonuclease of the archaeon Halobacterium volcanii produces 5′ half molecules containing the 2′,3′-cyclic phosphate, but the requirements for ligation of tRNA halves in Archaea have not been characterized (Thompson and Daniels, 1988). The processing of the 23S rRNA intron in the archaeon Desulfuroccus mobilis shares many properties with the processing of tRNA gene introns. Interestingly, cleavage of the D.mobilis pre-rRNA by the endonuclease appears to generate splicing intermediates bearing the 3′-phospho- monoester end (Kjems and Garrett, 1988). It is not known whether the terminal phosphate has to undergo cyclization before the ligation step.

Finally, it is possible that the cyclase is not a component of an RNA ligation pathway but modifies the 3′ end for a different purpose, for example, activation of RNA for exonucleolytic degradation. It has been shown that the presence of a terminal 3′-phosphate makes an oligonucleotide largely resistant to 3′→5′ exonucleolytic degradation by snake venom phosphodiesterase. Consistent with the interpretation that this effect is conferred by a strong charge, oligonucleotides bearing a 2′,3′-cyclic phosphate were found to be only marginally less active than 3′-OH-terminated substrates (Richards and Laskowski, 1969; Laskowski, 1971). Identification of physiological substrates of the cyclase and its function in cellular RNA metabolism are subjects of current experimentation.

Cloning of the cyclase cDNA

Partial sequence of the cyclase cDNA was obtained by two consecutive PCR amplifications, using DNA prepared from a λgt11 human HeLa cell cDNA library (Clontech) as a template. For the first PCR, oligonucleotides 1 (CACAGGGCGTAATGCG, corresponding to the border sequence of the λgt11 EcoRI cloning site) and 2 [TC(G/T)GCGTG(C/G)AA(C/G)TG(G/C)TG(AG/CA)TG(A/G)TT], representing a mixture of 96 oligomers complementary to the sequence encoding peptide NQVQ, a fragment of pep1, were used as upstream and downstream primers, respectively. A 100 μl PCR contained 1 μM oligonucleotide 1, 4 μM oligonucleotide 2, 200 ng of the library DNA, 250 μM of each of the four dNTPs and 2.5 U Taq DNA polymerase in Perkin Elmer buffer. Thirty cycles (denaturation at 94°C for 40 s, annealing at 55°C for 1 min, and extension at 70°C for 1.5 min) were performed. For the second PCR reaction, oligonucleotide 3 [GA(T/C)CGA(C/G)TGY(A/C/T)AT(A/C/T)ATTG(A/G)GTT, a mixture of 144 oligomers coding for the sequence DGSGMEG of pep1 and oligonucleotide 4 (GCGTG(A/G)GT(A/G)TTA(C/G)AA(C/G)TAA(C/G)AA(A/G)GC]T, overlapping with oligonucleotide 2 and representing a fragment of 60 oligomers coding for the sequence DLVNVJQ of pep2, were used as primers. The 100 μl PCR contained 4 μM primers, 250 μM dNTPs, 2.5 U Taq DNA polymerase and 8 μl of the first PCR. Thirty cycles (40 s at 94°C, 1 min at 52°C, 1.5 min at 72°C) were performed. A 667-bp amplified DNA fragment (positions 195–862, Figure 1) was subcloned into the SmaI site of pBluescribe (Stratagene) and sequenced by the dideoxy chain termination method. The fragment contained an ORF encoding the peptides pep2 and pep3. The PCR amplification scheme described above represents the only successful reaction of many similar ones tested with other combinations of primers.

To obtain a longer cDNA, the HeLa Agt11 DNA library was screened with the PCR-amplified fragment as a probe. Hybridizations were at 42°C in 5×SSPE buffer (SSPE is 0.18 M NaCl, 10 mM NaH2PO4, 1 mM Na2-EDTA, pH 7.7) containing 50% formamide, 5×Denhardt's solution (100×Denhardt's solution is 2% Ficoll, 2% PVP, 2% BSA),
1% SDS and 50 μg/ml denatured salmon sperm DNA. Eight clones were isolated after screening 1×10^6 recombinant plagues. The inserts were subcloned in pBlueScript II and analysed by restriction mapping and sequencing of the ends. The longest clones were sequenced on both strands. The longest clone extended to position 191 (Figure 1), and was thus incomplete at the 5' end. The upstream sequence of the cyclase cDNA was obtained by a PCR approach using oligonucleotide 5' (CCCTTTTGGGTAATCTC, positions 662-649 in Figure 1), oligonucleotide 6' (AAGCTTTAGGTTTAC, corresponding to the border sequence of the EcoRI ggt11 cloning site) and 200 ng of the ggt11 library DNA. PCRs, cloning of the amplified fragments and sequencing were performed as described above. The longest amplified fragment extended to position 1 of the sequence shown in Figure 1. The authenticity of the PCR-generated sequence was confirmed by identification of the human cyclase EST clone (DDBJ/EMBL/GenBank accession number Z42277), which starts at position 93 (Figure 1), and by sequencing the Cpg island (Cross et al., 1994) human genomic clone (Z57130) which represents the upstream portion of the cyclase gene. The 740-bp sequenced region spans the putative promoter (62 bp), 5'-terminal leader (170 bp) and the coding region which is interrupted by two introns located at positions 215/216 and 316/317 (Figure 1). Sequences of the cyclase cDNA and the genomic Cpg island clone are deposited in the EMBL, GenBank and DDBJ databases under accession numbers Y11651 and Y11652, respectively.

Cloning of the E. coli cyclase

Two neighbouring ORFs of unknown function, encoded by the E. coli K12 chromosome in a region adjacent to muT (DDBJ/EMBL/GenBank accession number U18997), were identified in the database search using the human cyclase protein sequence as a query. The region of 1047 bp (positions 336558-337605 in U18997), covering the two ORFs was PCR-amplified using 200 ng of purified E. coli K12 genomic DNA (Ausubel et al., 1990) as a template and appropriate oligodeoxynucleotides as primers and cloned into pBlueScript. Resequencing of the insert on both strands revealed an additional C residue between G337194 and A337195, and a sequence GCCGC instead of CGCCG at positions 337194–337223. To further confirm these changes, the cyclase gene fragment was PCR-amplified using DNA prepared from the λ clone DD765 (kindly provided by Drs G.Plunkett and F.Blattnar, University of Wisconsin, Madison) as a template and the Flu DNA polymerase (Stratagene). Two clones originating from two independent PCRs were sequenced on both strands, yielding identical results. The corrected sequence encodes a single ORF showing 32% identity and 42% similarity to the human RNA cyclase (Figure 8).

Northern blot analysis

Northern blot analysis was performed using formaldehyde–agarose gels and 15 μg of total RNA isolated (Ausubel et al., 1990) from various cell lines. The RNA was blotted onto GeneScreen membranes and UV cross-linked. The blot containing RNAs originating from different human organs was purchased from Clontech. The cDNA fragment (positions 191–1210, Figure 1A) was PCR-amplified as the cyclase probe. The human β-actin cDNA, furnished by Clontech, was used as a control. The probes were labelled with [α-32P]dCTP (3000 Ci/ml, Amersham) by the random priming method (Feinberg and Vogelstein, 1983). The hybridization was for 16 h at 42°C in 5×SSPE containing 50% formamide, 10× dextran sulphate, 1% SDS and 50 μg/ml denatured salmon sperm DNA. The blots were washed in 2×SSC (SSC is 0.15 M NaCl, 15 mM Na3citrate) and 0.1% SDS for 30 min at 42°C, and in 0.2×SSC and 0.1% SDS for 30 min at 42°C and then at 60°C.

Overexpression and purification of the human and E. coli cyclases

Human RNA cyclase. BamHI sites were introduced on the 5' and 3' side of the cyclase-coding sequence using PCR-based site-directed mutagenesis. The BamHI-BamHI fragment was cloned into the pGEX-2T vector (Pharmacia) for expression in the E. coli strain BL21. In the pGEX-2T construct, the S. typhimurium S-transferase is placed in frame at the N-terminus of the fusion protein. The best, though still quite low, yield was obtained by inducing a 0.7 OD600 culture (grown at 37°C) with 1 mM IPTG for 2 h at 30°C. The protein remained soluble during expression in E. coli and was purified in the native form under non-denaturing conditions on glutathione-Sepharose 4B resin (Pharmacia) following the manufacturer's protocol. The protein was then applied to a 10 ml Sephadex G-25 column equilibrated and eluted with 30 mM HEPES-KOH, pH 7.6, 0.1 mM EDTA, 0.5 mM DTT, 5% (v/v) glycerol, 0.01% Triton X-100 and 10 μM PMSF. It has proven impossible to express the cyclase as a 6×His-tagged protein using either pQE-60 (Quagen) or pET11d (Novagen) as vectors. The protein concentration was measured by the method of Bradford using the reagent obtained from Bio-Rad and BSA as a standard.

E. coli RNA cyclase. Ncol and BamHI sites were introduced 5' and 3', respectively, of the cyclase coding sequence by PCR-based site-directed mutagenesis. The Ncol-BamHI fragment was cloned into the pET-11d vector to produce a recombinant protein containing a sequence GSHHHHHHH at the C-terminus. Overexpression was performed in E. coli strain BL21(DE3)pLysS. The protein remained soluble and could be purified in the native form under non-denaturing conditions using the Ni-NTA resin according to the protocol provided by Quagen. The purified protein was applied to a Sephadex G-25 column as described above.

Assays of cyclase and chromatography

Preparation of substrates. Two oligoribonucleotides CCCTCCCCCG and AAAAAUAAAAA were synthesized and purified by HPLC by MWG-Biotech (Munich). They were 5'-terminally labelled using [5-32P]pCp (pCp) and T4 RNA ligase to produce (Np) 9Gp*Cp. Reaction mixtures (15 μl) contained 70 mM HEPES–KOH, pH 8.3, 10 mM MgCl2, 3 mM dithiothreitol, 10% glycerol, 10% dimethylsulphoxide, 40 μM ATP, 3.3 μM p*Cp (specific activity 1000 Ci/mmole), 0.7 μg of oligodeoxynucleotides and 6 μT4 RNA ligase (New England Biolabs). After 1 h at 4°C, samples were diluted with 60 μl of 50 mM HEPES–KOH, pH 7.2, containing 3 mM EDTA, and incubated at 37°C for 1 h with 5 U of RNase T1. SDS was then added to a final concentration of 0.1% and the samples extracted with phenol/chloroform/isooamy alcohol. The substrates, corresponding to (Np)Gp*, were purified on a Sephadex G-25 (fine) spin column pre-equilibrated with 20 mM ammonium acetate, pH 5.5. Aliquots of radioactive substrates were analysed by digestion with RNase T2, nucleases P1 or CIP, followed by TLC on cellulose plates in solvent A in a 8% urea/20% polyacrylamide gel.

Preparation of the competitors

Preparation of unlabelled oligoribonucleotides AAAAAAAG and CCCCAACCGG (referred to as RNA1 and RNA2) from the 3'-OH-terminated counterparts was similar to that for the substrates labelled at the 3'-terminal phosphate (see above), except that ligation reactions contained 3 mM pCp. A small amount of [5-32P]pCp (final specific activity 0.33 Ci/mmole) was included to calculate the reaction yields. Approximately 60% of the input oligonucleotide was found in the 3'-phosphorylated form following the ligation and RNase T1 digestion reactions. The RNase T1 digestion was omitted.

Cyclase assays and TLC analysis

Cyclase activity was assayed by the Norit method as described elsewhere (Filipowicz and Vicente, 1990). Unless indicated otherwise, the 10 μl assays contained 40 fmol of the substrate and incubations were for 20 min at 25°C. Other details are indicated in the figure legends. Digestions with nucleases P1 (Gibco-BRL), RNases T1 and T2 (Calbiochem) and the 2'-3'-cyclic nucleotide, 2'-3'-phosphodiesterase (CNase) from bovine brain (Sigma) were performed as described previously (Konarska et al., 1981). The TLC was in solvent A (saturated NH4SO4, 3 M Na acetate, isopropyl alcohol (80:62:3) or B (isobutyric acid/conc. NH2, H2O (66:1:33)).
Labelling of the cyclase with [γ-32P]ATP and AMP release assays

Reactions (15 μl) containing 20 ng of cyclase, 22 μM [γ-32P]ATP (specific activity 89 Ci/mmol) were incubated at 25°C under standard assay conditions, except that the (Np)3Gp* substrate was omitted. In the release assays, 2.5 μg of the cyclase was first added under standard conditions in the presence of 2.1 M [α-32P]ATP (specific activity 800 Ci/mmol), with no substrate added, for 3 h at 25°C. The reactions were then diluted 7-fold with the cyclase assay buffer, different amounts of substrates were added and incubations continued for 15 min at 25°C. The reactions were analysed by SDS–PAGE and autoradiography. Immediately before application to the gel, samples were supplemented with unlabelled ATP (final concentration 10 μM).

Cell transfections and indirect immunofluorescence

To construct pBact-CYC-myc, the EcorI sites were introduced into 5’ and 3’ of the cyclase coding sequence by PCR-based site-directed mutagenesis using oligonucleotides 7 (GAGAGGAAAGATTTCTACGCGGCGGCGCTGG) and 8 (AGTGTTGAGTTGAGAAATCTATAGATTG) as the upstream and downstream primers, respectively. The EcorI-EcorI fragment was cloned into the pBact-myc vector (Cravchik and Matus, 1993) for expression of the myc-epitope-tagged cyclase in transfected cells. The plasmid expressing the myc-epitope-tagged ASF/SF2 splicing factor (pMyC-ASF) was kindly supplied by Dr P.Kreivi and A.Lamond, University of Dundee, UK.

Cells were cultured in DME medium (Sambrook et al., 1989) with the addition of 10% fetal calf serum in a 5% CO2 humidified atmosphere at 37°C. Cells were transfected with pBact-CYC-myc (2–10 μg) and pMyC-ASF (10 μg) using the calcium phosphate DNA precipitate transformation method (Chen and Okayama, 1987), cultured for 24 or 48 h in a 5% CO2 humidified atmosphere and fixed with 3% paraformaldehyde in PBS (Sambrook et al., 1989) at 20°C for 20 min. Cells were treated with 0.5% Triton X-100 solution for 30 min and 5% non-immune goat serum in PBS for 20 min. The slides were then treated with either mouse monononal antibody GE10 raised against the human c-myc epitope (Evan et al., 1985) and obtained from the European Collection of Cell Cultures (Porton Down, UK) or the mouse monononal anti-α2b antibody (Organon Teknika-Cappel, Belgium). A FITC-conjugated goat anti-mouse antibody [AffiniPure F(ab')2 fragment; Jackson ImmunoResearchLaboratories] was used as a secondary antibody. Samples were examined with a Zeiss Axiohot microscope and a Leica confocal scanning laser microscope using a 63× objective. Images were recorded using Leica software (SCANWARE 4.2) provided with the system, and analysed with Imaris software on a Silicon Graphics work station. Quantification of the FITC signals was performed on a PowerMac 9500 computer using the public domain image analysis program V.1.57 developed at the US National Institutes of Health and available from the Internet by anonymous FTP from zippy.nimh.nih.gov.

Acknowledgements

We gratefully acknowledge the gifts of plasmids or phages from P.Kreivi and A.Lamond (pMyC-ASF construct), J.Takeda (Hs2 EST clone), G.Punkett and F.Blatterer (a phage DD765), the UK HGMP Resource Center, Cambridge (Cpg island clone). We also thank R.Mathias for providing the Northern blot of cell culture RNA, J.Hall for synthesis of AAAAAATAAAG13p, T.Pohl for providing sequence of the yeast gene, K.Drabikowski for the sequence alignments, S.Kaech for advice on immunofluorescence during the localization experiments and G.Thomas, H.Rothnie and F.Dragon for critical reading of the manuscript. P.G. was supported by a fellowship from the European Community.

References

