Advertisement

It cuts two ways: microtubule loss during Alzheimer disease

Daphney C Jean, Peter W Baas

Author Affiliations

  • Daphney C Jean, 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
  • Peter W Baas, 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA

Microtubule loss from axons and dendrites is a key contributor to nervous system degeneration during Alzheimer disease. Previous evidence suggested a simple pathway by which tau dissociation from microtubules in the axon allows excess severing of microtubules by katanin. Now, new evidence has emerged for a more complex pathway by which abnormal tau invasion into dendrites, triggered by Aβ oligomers, results in excess severing of microtubules by spastin.

Alzheimer disease (AD) is a member of a category of neurodegenerative disorders called tauopathies (Wang and Liu, 2008). These are diseases of the nervous system in which tau becomes abnormally phosphorylated, and thereby detaches from microtubules. As the microtubules lose tau, they diminish in number and density, and this loss of microtubule mass negatively impacts the capacity of the neuron to maintain axonal transport and synaptic connections. Terms such as disintegrate or ‘fall apart’ are often used to describe the effect on the microtubules as they lose tau, but to date there has been very little information on how this happens. There is no mechanistic evidence to support the view that the microtubules become less stable and simply disassemble by their normal dynamic properties.

One possibility is that tau normally protects microtubules from being destroyed by various proteins in the axon that would otherwise cut them into pieces or in some other way break them down. This presumably reflects a physiological mechanism wherein the regulation of tau dissociation from the microtubule via signalling pathways controls when and where microtubule breakage normally occurs. When a pathological condition causes tau to detach from microtubules, they become extremely sensitive to such factors. In addition, there is strong evidence that the abnormal tau, whether soluble or filamentous, can elicit toxic gain‐of‐function effects on the axon (Wang and Liu, 2008).

To make matters even more complex, …

Subscribers, please sign in with your username and password.

List of OpenAthens registered sites, including contact details.